1 Complex Numbers
Definition 1 (Complex Unit and Zero).
FE VT = 2=
1=(1,0) j=1(0,1)

Definition 2 (Negation and Sum). Let z,w € C

0=(O70)
—z = (—2’1,—22) zhw = (21 + w1, 22 —|—w2)

Lemma 1. The complex numbers form an additive
group. Let z,w,v € C, we have

Identity 24+ 0=z
Commutativity z +w = w + z
Associativity z + (w +v) = (z+w) +v
Inverse property z+ (—z) = (—2)+2=0
Definition 3 (Multiplication). Let z,w € C
(a,b) ® (¢,d) = (ac — bd, ad + bc)

Lemma 2. The complex numbers form a commutative
ring. Let z,w,v € C

Identity 1-z =z
Commutativity z -w =w - 2
Associativity z(wv) = (zw)v
Distributivity z(w + v) = zw + zv

Definition 4 (Real and imaginary part and conjuga-
tion). Let z = a + jb. The real part of z is Re(z) = a,
similarly the imaginary part is Im(z) = b. We can thus
define the complex conjugate Z of z to be

z=Re(z) + jIm(z) Z=Re(z) — jIm(z)

Definition 5 (Absolute value). If z = a+ jb we define
the absolute value |z| = Va2 + b?

Lemma 3 (Properties of absolute value). Let z,w € C.
We have 2z = |z|? and as a consequence |zw| = |2] - |w]|
and |Z| = |z|. In addition we have the inequalities
— |2l <Re(z) <[]
2] <Tm(z) < |4

2| < [Re(2)[ + [Tm(2)|
|2+ w| < |z] + |w]

The last one is the triangle inequality. Notice that
|z| € RY.

Definition 6 (Reciprocal and quotients). If z is a non-
zero complex number we define the reciprocal z~* of z
to be 271 = |2|722. If 2 = 0 the reciprocal 07! is left
undefined. It is now possible to define z/w = zw™!
with z,w € C and w # 0.

Lemma 4 (Properties of conjugation). Let z,w € C.
z=ziff z€ R and Z = w iff z = w. Furthermore:

x|

=z ztw=Zx+w Re(z)=(2+7%)/2

Im(2) = (= - 2)/2]

z-w z/w=Z/w

w
g
Il

Definition 7 (Argument and polar notation). An al-
ternative representation of a complex number z =

a + jb is its polar form z = rZ¢, where r = |z| and
¢ =argz.
a =1Tcoso b=rsing¢ r=vzz

For a = 0 we define ¢ = lim,_,p arctan(b/a) = +7/2
and otherwise

_ ~ Jarctan(b/a) @=0
(b — arg(z) = {arctan(b/a) +7 a<0
_ Jarccos(a/r)  b=0
=9 arccos(b/r) b <0

Another variant of this notation is
z=rcjs¢ =r(cos¢+ jsing)

Lemma 5 (Arithmetic in polar notation). Let z,w €
C then the product zw has

lzw| = |2] - |w| arg(zw) = argz + argw
Similarly the quotient z/w follows

|2/w] = |z|/w]

Lastly from the product we see that for k € N

arg(z/w) = argz — argw

|28 = |2|*  argz® = kargz

Theorem 1 (De Moivre’s formula). Let n € N
(cos ¢ + jsin ¢)" = cos(ng) + jsin(ne)
As a consequence with the binomial formula (a4 b)™

Sio (M)a" " b, recalling that (}) = nl/(k!(n — k)!)
(Pascal’s triangle), we have

n

sin(nz) =) (n> (cosz)¥ (sinz)" " sin (n—k)m

k 2
k=0

cos(nx) = Z (Z) (cosz)k (sinz)" ™% cos @

k=0

2 Complex valued functions

Definition 8 (Function in C). Let f : D — W with
both D, W C C that maps z = (a+jb) — w = (u+jv),
then v = Re f(2) and v = Im f(z). If f is a bijection
with inverse f~1, then a = Re f~1(w),b = Im f~1(w).

Definition 9 (Differentiation in C). Let f be a func-
tion of z and h € C. We have the limit

i 4 Zo 1) — f(z0)
|h|—0 h

= f'(20)

to define the derivative of f at the point zg.

Lemma 6 (Local dilation and rotation). Let f be a
differentiable function in C. If f’(z) # 0 everywhere,
then f is a conformal map (i.e. preserves angles) with
local dilation of |f’(2)| and rotation of arg f’(z)



Definition 10 (Linear function).

Definition 11 (Monomial and n-th root). Let w = 2™
be a monomial of degree n € N. Using the polar
notation we see that (rZ¢)" = r"Z(n¢). Because
rZ¢ = rZ(¢+ 2m) there cannot be a bijection between
w and z, if we want to define an inverse function
z = {/w we get many values with the form

2k = ri(d+ k2m)/n

This fact implies that in general for z,u € C {/zu #
{/z 3/u, as the relationship holds only for some values

of /z and {/u.

Theorem 2 (Roots of a polynomial). Every complex
polynomial of degree n has always n roots in C.

0<k<n

Theorem 3. Every complex polynomial of degree n
with coefficients can be uniquely rewritten in term of
its roots.

Zakz =a, H(z—zk)

k=0

Theorem 4 (Polynomal with real coefficients). The
roots of a polynomial with real coefficients of degree
n, always come in conjugate complex pairs of r and 7.
That is because

(z=7)(z=7) = 22 = 2Re(r)z + |2|?

Lemma 7. From the previous theorem follows that a
polynomial with real coefficients of odd degree, has al-
ways at least one real solution because r € R <= r =
T.

Theorem 5. All roots of a polynomial p(z) =
> rh_oarz" are inside of the open disk centered at the
origin of radius >} _,lak/an|.

Theorem 6 (Cardano’s cubic formula).

Definition 12 (Exponential). If z is a complex num-
ber we define the exponential function e* by its con-
vergent power series

oo n

.
n!

n=0

Theorem 7 (Euler’s formula). By setting the argu-
ment of the exponential function to jt for some ¢t € R
we can reorder the power series to be a sum of the
power series of jsin and cos, and thus define

et = cost + jsint = cjst = 1/t

Lemma 8 (Rules for exponents). Let a,b € C and
k € Z, we can show that

a b ea/eb _ ea—b

ee a+b

k
=e (e®)" = ek
Definition 13 (Trigonometric functions). When z is a
complex number we define
el? 4 e I* el* — eIz
_— sinzg = ———

COS z = D) 2]

like the (real) hyperbolic trigonometric functions
coshz= (e +e%) /2 sinhz= (e —e %) /2

Notice that the sinus function is point symmetric to
/2, because sin(m/2 — z) = sin(7/2 + z).

Lemma 9 (Some trigonometric
z,a,b € R and a, 5 € C

identities). Let

sin(x 4+ 7/2) = cos(z) cos(x — m/2) = sin(x)
sinh(jz) = jsin(z) cosh(jz) = cos(x)
sin(a + jb) = sin(a) cosh(b) + j cos(a) sinh(b)
cos(a + jb) = cos(a) cosh(b) + j sin(a) sinh(b)
2sin(a) sin(B) = os( B) — cos(a + )
(a

2sin(a) cos(B) = sin(a — B) + sin(a + 3)

Lemma 10 (Superposition of sinuses). Let s(t) =
Asin(wt 4+ ¢) be a sinusoidal wave. We can rewrite
s in complex form with

s(t) =Im

If we now wish to sum N sinusoids with the same fre-
quency w, the resulting sinusoid A sin(wt + ¢) has

N N
A= Z Al p=arg Z A, el?n
n=1 n=1

Definition 14 (Logarithm). Because w = e* defined
from C — C is not a bijection (e**2™ = ¢*), unless we
restrict the imaginary part of the domain to (m, 7], we
get only an equivalence relationship because

(Aej(‘*’t“")) = Im Ael?® - %t

In [[uw]ed @420 Injuw| + j(6 + k27)

where k € Z. Similarly for z,w € C

n(w) =z (mod 27j)
ln(wk) = kIn(w) (mod 27j)
In(zw) =1n(z) + ln(w) (mod 275)
In(z/w) =1n(z) — In(w) (mod 27y)

Lemma 11 (General exponentiation). So far we have
only exponentiation for an exponent k € Z, by adding
m € N we can define the quotient k/m € Q that to-
gether with z € C gives

k/m _ 6ln(z)k/rn

= exp ((In|z| + j(arg z + 27n))k/m)
= exp (In|z| - k/m) exp((arg z + 27n)jk/m)
|k/m

m

=z exp ((arg z + 2mn)jk/m) = Vzk

like in the reals, except that we have m values because
of the m-th root. If we let w € C the expression z%
cannot be equal to an unique value because

w wln z

¥ =e = exp (w(In|z| + j arg z + 27wny))

ew(ln\zH—J arg z) erTrn]

instead it is said to be multivalued. This means that
there are no general exponentiation rules.



3 Fourier Series

Definition 15 (Real trigonometric polynomial). Let
w = 27/T € R and A,, B, be sequences in R. We
define a real trigonometric polynomial of degree N to
be

A
20 Z Ay, cos(nwt) + By, sin(nwt)

n=1

TN(t)

Lemma 12 (Orthogonality of the basis functions). Let
m,n € Ny

T T m=n=0
/cos(mwt) cos(nwt) =< T/2 m=n>0
0 0 m#n
T/2 m=nAn#0
sin(mwt) sin(nwt) = ¢ 0 m#n

0 m=0vn=20

cos(mwt) sin(nwt) = 0

O\ﬂ o\ﬂ

Definition 16. We denote with €2 the space of real val-
ued, T-periodic, piecewise continuous functions, that
have only a finite number of discontinuities, in which
both the right and left limit exist, within the interval
[0,T).

Theorem 8 (Fourier coefficients). For any f € Q we
can now define the Fourier coefficients

T

— 7 [ 1

0

f(¢) cos(nwt) dt

N
'ﬂ\l\?

ap =

by, = f@)sin(nwt)dt by =0

N

St —s TT—

Worth noting are the special cases when n = 0.

Definition 17 (Fourier Polynomial). We can now use
the Fourier coefficients as sequences for a trigonometric
polynomial to obtain a Fourier Polynomial

N
% + Z ay, cos(nwt) + by, sin(nwt)

n=1

Sn(t) =

Lemma 13. A trigonometric polynomial has the smal-
lest distance (by the L? metric) from a function f € €,
iff A, = a, and B,, = b,, in other words iff it is a
Fourier Polynomial.

Definition 18 (Fourier Series). We can finally define
the Fourier Series to be the infinite Fourier Polyno-
mial, by letting N — oo

o0
24 Z ay, cos(nwt) + by, sin(nwt)

S =3

n=1

Theorem 9 (Fourier coefficients of even and odd func-
tions). Recall that a function is said to be even if
f(=z) = f(x) or odd if f(—x) = —f(x). We can show
that if a function is

e even, then b, = 0 for all n, and

T/2
an, = % / f(#) cos(nwt) dt

0

e odd, then a,, = 0 for all n, and

T/2
/ F(1) sin(nwt) dt
0

4
bo = 7

Lemma 14 (Linearity of Fourier coefficients). Recall
that linearity means L(ux + Ay) = pL(z) + AL(y). We
then let f,g € Q be functions with Fourier series and
h = pf+ g where u, A € R are constants. By denoting

(f)

with ay ' the Fourier coefficient a,, of the function f,

and similarly with bﬁf ), it is easily shown that
a = pal) + xal® b = bl + \bl9)

Lemma 15 (Fourier coefficients after time dilation).
Let f € Q be a function with a Fourier Series and

g(t) = f(rt) with 0 # r € R. It follows that a(g) SLf)
and b} = sgn(r) ).

Lemma 16 (Fourier coefficients after time transla-
tion). Let f € Q be a function with a Fourier Series

and ¢(t) = f(t +7) with 7 € R. Tt follows that
a9 = cos(nwr) - alf) + sin(nwr) - b n>0
b9 = —sin(nwr) - alf) + cos(nwr) - b n >0

Theorem 10 (Fourier theorem). For any f € Q the
Fourier series of f converges in L? metric to f.

lim
N—o00

N
ao .
5 + E an cos(nwt) + by, sin(nwt) — f()|| =0

n=0

Theorem 11 (Plancherel Parselval theorem). Let f €
Q with a Fourier Series with coefficients a,, and b,,.

T
JECR
0

Theorem 12. Both sequences a,, b, for the Fourier
coefficients of a function f € € converge to zero.

Nl

ia+b2§

20
2

lim a, = lim —/f cos(nwt)dt =0
n—oo n~>oo
lim b, = lim —/f sin(nwt)dt =0
n—oo TL*)OO



Theorem 13 (Rate of convergence of Fourier coeffi-
cients). If f is a T-periodic, (m—2) times differentiable,
continuous function. And if its (m — 1)-th derivative
is pieceweise monotonous and € €2, then there exists a
constant ¢ € R such that

c c
|an|§n—m |bn|§n7m m,n €N

Theorem 14 (Integration and differentiation of the
Fourier series). It is possible to show from the previ-
ous theorem (and others before) that when m > 2 the
Fouriers converges uniformly. This means that it is
possible to integrate or differentiate the series term by
term.

oo

)= Z bpnw cos(nwt) — annw sin(nwt)
n=1
and
t ~
n ago
dr = — —t
/f(T) ’ (Zl nw) + 2
0 n=

> n bn
+ (Z Z—w sin(nwt) — o cos(nwt))
n=1

Theorem 15 (Dirichlet pointwise convergence). Let
f € Q, then it is known that its Fourier series converges

to
o FE= 9+ [+ o)
e—0 2

for every t, where the left and right derivative f/(t—e¢),
f'(t+¢€), with € — 0, exist.

In the special case where f is continuous at ¢, and
the derivatives exist, there the Fourier series converges
exactly to f(t), i.e. the value of the function at ¢.

Definition 19 (Complex representation of the Fourier
coefficients). By letting n € Z and

T
_ ap—jb,
anc_n: _— =

1 —Jnwt
. = / F(t)e—imt a

0

using a notational trick for negative indices. We can
compactly write a Fourier series or polynomial as

S(t) = i cpelnet

n=—oo

Theorem 16 (Complex Fourier coefficients of even
and odd functions). By the definition of ¢,, and the pre-
vious similar theorem for the real coefficients, it is clear
that when a function f € 2 is even, then Im(c) = 0,
whereas when f is odd Re(ci) =0 (k € Z).

Theorem 17 (Complex Fourier coeffients after time
translation). Similarly to the previous theorem, we can
now compactly write that if f € ) has a Fourier series
with coefficients c;f), and g(t) = f(t + 7), then

C]gg) — ejk:cm'cgff) kel

4 License

This work is licensed

under a Creative Com-
mons “Attribution-
NonCommercial-

ShareAlike 4.0 Inter-

national” license.

©0Re


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

	Complex Numbers
	Complex valued functions
	Fourier Series
	License

