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1 GENERAL 
Artificial Intelligence is a broad concept with different interpre-

tations, module is focused on algorithms and applications 

where the computer learns from data, which is called Statistical 

Machine Learning (ML) 

Artificial General Intelligence (AGI): hypothetic computer pro-

gram that can perform intellectual tasks as well as or better 

than humans, it is the ultimate goal of research 

Computer: Input → Processing → Output, processing is non-

trivial, different possible In- and Outputs 

Turing Test: Human asks a question and receives an answer 

from a human and a computer. If he can't find out, which one 

was from the computer, the machine is intelligent. 

Today's AI: Artificial neural networks (data structure to express 

complex non-linear functions) with artificial neurons and deep 

learning, data-driven optimization 

4 ingredients of ML: Data, Cost-Function (Loss), Model, optimi-

zation procedure, optional ingredients for success: perfor-

mance optimization, visualization and evaluation of the learn-

ing process, cross-validation & regularization 

Large Language Models (LLMs): large transformer-based artifi-

cial neural networks which are used for translation, chat, Q&A, 

programming, … 

Supervised Machine Learning: (Regression: Linear regression, 

decision trees, boosting regressor, bagging regressor, Classifica-

tion: Logistic regression, K nearest neighbors, decision trees) 

 

Machine Learning is not just about models, it's also about: 

Data Engineering, Feature Engineering, Optimization methods, 

Validation methods, Parameter tuning, Model fitting & evalua-

tion 

2 NATURAL LANGUAGE PROCESSING (NLP) 
automated processing of human language (written and/or spo-

ken), aims to understand and generate human language 

1. One-Hot representation vectors: Count the number of words 

and define one unique vector per word with one 1 

 

Disadvantages: very high dimensional when a lot of words are 

used, sparse representation (many zeroes, memory-ineffi-

cient), no generalization (all words completely unrelated, be-

cause the vectors share no entries) 

2. Indexing: make a list of words (optionally alphabetically 

sorted), assign index to each word, represents words as an ar-

ray of indexes 

3. Distributed Representation: a word can be defined by con-

text, words with similar meanings occur in similar context, simi-

lar words share similar representations, needs a lot of data, 

time and CPU/GPU, predefined language model can be down-

loaded, known architecture: word2vec 

 

Word to Vector (word-embedding): mathematical function 

maps word to vector, this function is implemented in a so-

called Embedding Layer in neural networks, nearby words have 

semantic similarity, we can make calculations if we have "good" 

vectors 

 

dot-product is a measure of similarity, computer does not un-

derstand the meaning of a word, but it can make calculations. 

 

  

The bigger 𝑐𝑜𝑠(𝜃), the big-

ger is the cosine similarity. 

Max=1= exact same direc-

tion, 0= orthogonal (90°), 

Min=-1=opposite direction 

3 DIALOGFLOW 
2 architectures: business logic in own application, use Dialog-

flow to receive matched entities and react to them in own ap-

plication or use other services OR implement business logic in 

the cloud, use Dialogflow fulfillments to call other services 

Intent: detect what the client wants, many different phrases 

can express the same intent (e.g. order food, want to eat) 

Follow-up intent: intent that only makes sense after another 

(e.g. order drink in addition to food) 

Entities: to fulfill an intent, application needs to know some pa-

rameters (e.g. what food?), entities can be required or not, 

they can have a custom name and there are system entities, for 

example to match numbers, dates, geographical data, color, etc 

4 RANDOM VARIABLES AND RANDOM EX-

PERIMENTS 
Random Variables come in two flavours: discrete: X takes any 

of a finite set of values, e.g. {-8, 1.5, 2.693, 10}, continuous: X 

takes any value of an uncountable range, e.g. the real numbers 

in the interval (2, 7) 

Random vars represent outcomes of random experiments as 

numbers and are denoted with an uppercase letter (often X), 

the actual outcome is denoted with a lowercase letter (often x) 

Probability Mass Function (PMF) of a dice: 
 
 

Sum of two dice: 

4.1 JOINT PROBABILITY 
Independent random variables, if you throw a dice twice, the 

second number does not depend on the first number. 

Pr(𝑋, 𝑌) = Pr(𝑋) ∙ Pr(𝑌) 

Example: first dice is a 5, second dice is a 4 

Pr(𝑋 = 5, 𝑌 = 4) = Pr(𝑋 = 5) ∙ Pr(𝑌 = 4) =
1

6
∙
1

6
=

1

36
  

4.2 CONDITIONAL PROBABILITY 
Dependent random variables, the probability of rain depends 

on the clouds observed, below is a joint probability table 

X: Event to observe clouds (0=no clouds, 1= small clouds, 2= big 
clouds) 
Y: Event that it rains(0=no rain, 1=light rain, 2=moderate rain, 

3=heavy rain) 

P(X,Y) X=0 X=1 X=2  

Y=0 
0.35 0.21 0.03 

Pr(Y=0)= 
0.59 

Y=1 
0.10 0.07 0.04 

Pr(Y=1)= 
0.21 

Y=2 
0.00 0.05 0.05 

Pr(Y=2)= 
0.10 

Y=3 
0.00 0.02 0.08 

Pr(Y=3)= 
0.10 

 Pr(X=0)= 
0.45 

Pr(X=1)= 
0.35 

Pr(X=2)= 
0.20 1 

Probabilities of Y given X: Pr(𝑌|𝑋) =
Pr(𝑋,𝑌)

Pr(𝑋)
 

Example: Probability that you observe moderate rain when 

there are small clouds 

Pr(𝑌 = 2|𝑋 = 1) =
Pr(𝑋 = 1, 𝑌 = 2)

Pr(𝑋 = 1)
=
0.05

0.35
= 0.14… 

4.3 MARGINAL PROBABILITY 
The marginal probability can be read in the last row and column 

at the right above.  

 

4.4 TWO-STEP EXPERIMENT 
Example: We have a box with a red, blue & green coin. 

Red: 𝑃𝑟(𝑆 = ℎ𝑒𝑎𝑑) = 0.5, 𝑃𝑟(𝑆 = 𝑡𝑎𝑖𝑙) = 0.5 

Blue: 𝑃𝑟(𝑆 = ℎ𝑒𝑎𝑑) = 0.7, 𝑃𝑟(𝑆 = 𝑡𝑎𝑖𝑙) = 0.3 

Green: 𝑃𝑟(𝑆 = ℎ𝑒𝑎𝑑) = 0.1, 𝑃𝑟(𝑆 = 𝑡𝑎𝑖𝑙) = 0.9 

Step 1: Randomly pick a coin from the box 

Step 2: Flip the coin and observe outcome, head or tail 

 

𝐏𝐫(𝑿) = Pr(𝑟𝑒𝑑) = Pr(𝑏𝑙𝑢𝑒) = Pr(𝑔𝑟𝑒𝑒𝑛) =
1

3
  

𝐏𝐫(𝐘|𝐗) = Pr(ℎ𝑒𝑎𝑑|𝑏𝑙𝑢𝑒) = 0.7  

𝐏𝐫(𝑿, 𝒀) = 𝐏𝐫(𝒀|𝑿) ∙ 𝐏𝐫(𝑿) = Pr(𝑏𝑙𝑢𝑒, ℎ𝑒𝑎𝑑) =

Pr(ℎ𝑒𝑎𝑑|𝑏𝑙𝑢𝑒) ∙ Pr(𝑏𝑙𝑢𝑒) = 0.7 ∙
1

3
= 0.23̅  



 

 

4.5 BAYES RULE 
Example: We observe tail and want to calculate the probabili-

ties of which coin was used. 

Pr(𝑟𝑒𝑑|𝑡𝑎𝑖𝑙) =
Pr(𝑡𝑎𝑖𝑙|𝑟𝑒𝑑)Pr(𝑟𝑒𝑑)

Pr(𝑡𝑎𝑖𝑙)
=

0.5∙0.3̅

0.56̅
≈ 0.294  

Pr(𝑏𝑙𝑢𝑒|𝑡𝑎𝑖𝑙) =
Pr(𝑡𝑎𝑖𝑙|𝑏𝑙𝑢𝑒)Pr(𝑏𝑙𝑢𝑒)

Pr(𝑡𝑎𝑖𝑙)
=

0.3∙0.3̅

0.56̅
≈ 0.176  

Pr(𝑔𝑟𝑒𝑒𝑛|𝑡𝑎𝑖𝑙) =
Pr(𝑡𝑎𝑖𝑙|𝑔𝑟𝑒𝑒𝑛)Pr(𝑔𝑟𝑒𝑒𝑛)

Pr(𝑡𝑎𝑖𝑙)
=

0.9∙0.3̅

0.56̅
≈ 0.529  

The three results above are called the posterior distribution. It 

is the result of updating the prior distribution with the evi-

dence. It is possible that we want to calculate the posterior dis-

tribution of multiple sequential outcomes. Then the posterior 

distribution from before becomes the new prior distribution. 

 

new Pr(ℎ𝑒𝑎𝑑) = 0.294 ∙ 0.5 + 0.176 ∙ 0.7 + 0.529 ∙ 0.1 =

0.323  

Pr(𝑟𝑒𝑑|ℎ𝑒𝑎𝑑) =
Pr(ℎ𝑒𝑎𝑑|𝑟𝑒𝑑)Pr(𝑟𝑒𝑑)

Pr(ℎ𝑒𝑎𝑑)
=

0.5∙0.294

0.323
≈ 0.454  

Pr(𝑏𝑙𝑢𝑒|ℎ𝑒𝑎𝑑) =
Pr(ℎ𝑒𝑎𝑑|𝑏𝑙𝑢𝑒)Pr(𝑏𝑙𝑢𝑒)

Pr(ℎ𝑒𝑎𝑑)
=

0.7∙0.176

0.323
≈ 0.381  

Pr(𝑔𝑟𝑒𝑒𝑛|ℎ𝑒𝑎𝑑) =
Pr(ℎ𝑒𝑎𝑑|𝑔𝑟𝑒𝑛)Pr(𝑔𝑟𝑒𝑒𝑛)

Pr(ℎ𝑒𝑎𝑑)
=

0.1∙0.529

0.323
≈ 0.163  

The same 4 calculations would have to be done for the third 

head outcome.  

Another example:  

Given: AIDS Test has sensitivity=0.999, specificity=0.999, inci-

dence rate=0.001 

Asked: Person is tested positively, what is the probability that 

the person has AIDS? 

 

 

 

5 LINEAR/POLYNOMIAL REGRESSION 
Linear Models are the simplest models to explain a relationship 

between input and output. Linear regression is a standard 

method to find an optimal linear model.  

In ML, we use the term model for any 

mathematical function that "explains 

the data". 𝜀𝑖 is the unexplained noise 

Instead of approximating 𝑦𝑖, we cal-

culate an estimate �̂�𝑖 of the usually un-

known 𝑦𝑖. 

A linear model looks like this, where 

𝑎 is the slope and 𝑏 the intercept. 

In ML, the loss is what we want to minimize. An example of a 

loss function is the mean squared er-

ror (MSE). The difference 𝑒𝑖 is called 

the residual. 

 

Data 

Linear model 

Residuals 

 

Pearson cor-

relation coef-

ficient 

Data can still 

be highly 

structured, 

despite coef-

ficient=0 

5.1 MULTIPLE/POLYNOMIAL LINEAR REGRESSION 

 

𝒚: Dependent variable (DV), 𝒙𝒊: independent variables (IVs), ex-

plaining factors, 𝒘𝒊: weights for the factors 

Example: 𝑦=blood pressure, 𝑥1=age, 𝑥2=weight, 𝑥3=sex, etc. 

Matrix Notation: 

 

 

Cubic Model:  

6 STOCHASTIC GRADIENT DESCENT (SGD) 
When we say AI is learning, that means an algorithm is per-

forming some sort of optimization. Optimization is the problem 

of finding a set of inputs to an objective function that results 

in a maximum or minimum function evaluation. In our applica-

tions the objective is to minimize the loss function. 

6.1 GRADIENT DESCENT 
This is a fundamental optimization algorithm. 

The gradient is a vector in 

parameter space. It is the 

direction of fastest in-

crease of the Loss. That is, 

if we change the parame-

ters in the direction of the 

gradient, the loss increases. 

If we "move" in the oppo-

site direction, the loss de-

creases. 

At each iteration, the model parameters are updated such that 

the Loss (MSE) is reduced. The procedure continues until the 

result converges (no / very small changes). 

Gradient Descent to optimize Linear Regression: 

The three points 

(Weight/Height) have the co-

ordinates: 

(0.5/1.4) 
(2.3/1.9) 
(2.9/3.2) 

1. Pick a random value for 

slope and intercept, it's an ini-

tial guess, that gives Gradient Descent something to improve 

upon 𝑠𝑙𝑜𝑝𝑒 = 1, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 0 

2. We define a learning rate 𝑙𝑟 = 0.01 

3. Calculate MSE: 
1

2𝑁
∑ (𝑦𝑖 − (𝑠𝑙𝑜𝑝𝑒 ∙ 𝑥𝑖 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡))2 =𝑁
𝑖=1

1

2𝑁
((1.4 − (1 ∙ 0.5 + 0))

2
+ (1.9 − (1 ∙ 2.3 + 0))

2
+

(3.2 − (1 ∙ 2.9 + 0))
2
) =

1

6
(0.81 + 0.16 + 0.09) = 0.176̅ 

4. Take the derivative of the MSE for each parameter in it 

(slope & intercept). It's also called take the Gradient of the 

Loss function. 

𝑑

𝑑𝑠𝑙𝑜𝑝𝑒
=
1

𝑁
∑ −𝑥𝑖(𝑦𝑖 − (𝑠𝑙𝑜𝑝𝑒 ∙ 𝑥𝑖 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡))

𝑁

𝑖=1

=
1

3
( − 0.5(1.4 − (1 ∙ 0.5 + 0))

− 2.3(1.9 − (1 ∙ 2.3 + 0))

− 2.9(3.2 − (1 ∙ 2.9 + 0)))

= −0.13̅ 
𝑑

𝑑𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
=
1

𝑁
∑ −(𝑦𝑖 − (𝑠𝑙𝑜𝑝𝑒 ∙ 𝑥𝑖 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡))

𝑁

𝑖=1

=
1

3
(−(1.4 − (1 ∙ 0.5 + 0))

− (1.9 − (1 ∙ 2.3 + 0))

− (3.2 − (1 ∙ 2.9 + 0))) = −0.26̅ 

5. Calculate the new slope and intercept and repeat step 4 with 

the new values 

𝑛𝑒𝑤𝑠𝑙𝑜𝑝𝑒 = 𝑠𝑙𝑜𝑝𝑒 −
𝑑

𝑑𝑠𝑙𝑜𝑝𝑒
∙ 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒

= 1 − (−0.13̅ ∙ 0.01) = 1.0013̅ 

𝑛𝑒𝑤𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 −
𝑑

𝑑𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
∙ 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒

= 0 − (−0.26̅ ∙ 0.01) = 0.0026̅ 

6. Repeat steps 4 and 5, until all of the step's sizes are very 

close to 0 (threshold for stop can be defined) or we reach de 

defined maximum number of steps 

6.2 STOCHASTIC GRADIENT DESCENT 
When you have millions of data points or thousands of parame-

ters in the loss function, the Gradient Descent takes ages. O(pa-

rameters * datapoints * steps) Stochastic Gradient Descent 

uses a randomly selected subset of the data at every step, ra-

ther than the full dataset. This reduces time spent calculating 

the derivatives of the Loss function. Gradient-based methods 

only work if we can express a Loss-function as a differentiable 

function. This is not always the case. 

In the example in Gradient Descent, SGD would only calculate 

the two derivatives for one point per step. It is especially use-

ful when there are clusters of points in the data. Like GD, SGD 

is sensitive to the learning rate, the general strategy is to start 

with a relatively large learning rate and make it smaller with 

each step, many implementations will take care of this for you 

by default, it's called (simulated) annealing. There are many 

different options (called schedules) how to reduce alpha over 

time. (e.g. exponential decay). Typically, the learning decays to 

some lower bound (e.g. 0.001) and is then kept fix. 

Mini-Batch GD: It is rarely used and inefficient to use only one 

data point per step, instead we use a few random data points 

to calculate the two derivatives. This takes the best of both 

worlds, GD and SGD: it can result in more stable estimates in 

fewer steps than SGD, but is much faster than GD. The smaller 

the batch size is, the "noisier" the gradient approximation is. 

Typical batch sizes are 32/64/…/1024. 

When new data is added, we can take only one more step from 

where we left off, using the new sample, instead of starting 

from scratch. 



7 TOOLS 
Data: The internet is a huge source of data, but most data is 

unstructured. There are curated for example on kaggle.com 

Model: usually we do not start from scratch, we can use known 

architectures or pretrained modes, for example from hugging-

face.co, pretrained models contain information about their 

training data, therefore we can refine huge pretrained models 

with only a few additional data points, for example stable diffu-

sion for image generation 

Hardware resources (CPU/GPU/RAM/Storage): cloud infra-

structure is well suited, free instances with limited time can be 

used on colab.research.google.com  

8 RISKS 
Bias and fairness issues in AI algorithms: algorithms are cre-

ated by people, which are never fully objective, never just ac-

cept decisions from algorithmus, they must be explainable, au-

ditable and transparent 

Privacy and data security concerns: personal data collected by 

AI systems can be used by businesses for marketing, AI apps 

like self-driving cars can track your location and habits, AI can 

predict which information you want to see, creating a "filter 

bubble", risk of data breaches because of the amount of data 

that AI collects and processes 

Ethical implications of autonomous systems: respect human 

rights, impact on individual and societal well-being should be a 

central criterion in the development of AS, individual's ability to 

maintain appropriate control over their personal data must be 

respected, safety must be prioritized, accessibility 

Job displacement and economic impacts: AI has the potential 

to displace 30% of the jobs, but it also creates new ones,  AI 

could deliver additional global economic activity of around $13 

trillion by 2030 or about 16% higher cumulative GDP 

AI-enabled misinformation and deepfakes: AI systems are 

playing an overreaching role in the disinformation phenomena, 

it is easier now to create realistic fake content like deepfakes, 

states will abuse it 

9 REGULARIZATION 
The central challenge of ML: The model must perform well on 

new, unseen inputs. 

Polynomial models of degree 0-5: 

 

Out-of-sample/Generalization/Test Error: We receive a new 

data sample (𝑥𝑢𝑛𝑠𝑒𝑒𝑛 , 𝑦𝑢𝑛𝑠𝑒𝑒𝑛)and calculate �̂�𝑢𝑛𝑠𝑒𝑒𝑛 =

ℎ(𝑤, 𝑥𝑢𝑛𝑠𝑒𝑒𝑛), this error is the difference between  �̂�𝑢𝑛𝑠𝑒𝑒𝑛  and 

𝑦𝑢𝑛𝑠𝑒𝑒𝑛 .  

Our goal is to learn a model from data that generalizes well to 

new data. A "good" model has a low generalization error. It is 

possible, that a more complex model has a lower in-sample er-

ror but a higher out-of-sample error. 

We can't calculate the generalization error, because we don't 

have new data, only the data we were given. But we can esti-

mate it using the simple technique split. A common split-ratio is 

80/20 (80% of the data for training and the other 20% for test-

ing). First, we fit the model to the training set to minimize the 

in-sample error, then we evaluate the model against the test 

set to estimate the out-of-sample error. 

9.1 BIAS-VARIANCE TRADE-OFF 
bias=accuracy 

variance=precision 

underfitted model: 

high bias (failed to 

learn underlying 

structure in the 

data), low variance 

(stable model, for a 

change in data, we 

would fit (almost) 

the same model) 

 

overfitted model: low bias (complex model can explain the 

data well), high variance (optimizer has learned noise the data, 

MSE (almost) 0, high generalization error) 

 

Trade-off: higher bias → lower variance, lower bias → higher 

variance 

When building a supervised machine-learning algorithm, the 

goal is to achieve low bias and low variance for the most accu-

rate predictions. We would just build a model «as complex as 

the data permits». 

 

9.2 REGULARIZATION 
Regularization is a technique to control the model complexity, 

it helps us to find the "Best Fit" spot regarding bias, variance, 

training error and test error. 

Simple way: reduce polynomial degree to avoid overfitting, in-

crease degree to avoid underfitting 

Regularization adds a constraint to the model, rather, its opti-

mizer, to achieve this. We add a penalty term to the loss func-

tion, aka, cost function. Optimizer fits the data (minimize MSE) 

and also minimizes the constraint. Penalty is typically a con-

straint over the weights (slope for degree 1) of the model. 

We need 2 loss functions: 
1. Cost function for training/optimization 

2. Loss Function for error calculation in prediction �̂� 

It is common to have two separate functions as the function for 

2 may not be differentiable. But we will use MSE for both. 

9.2.1 Ridge Regression (L2) 
We can add a constraint to optimization to control model com-

plexity, so we need a way to measure the model complexity. 

This is the L2-Norm (Euclidean Norm): ∑ 𝑤𝑗
2𝑝

𝑗=1  

We add it to MSE (this is number 2 from above):  

 

MSEridge is now minimized during training, so we have 2 

measures: performance/regression error: MSE, complexity/reg-

ularization term: Ridge 

𝜆 is a hyperparameter, that does not belong to the optimization 

process as such. It is varied to find the best fit. As 𝜆 gets larger, 

we are enforcing the weights to be smaller by constraining the 

squared sum of weights more and more. Increasing 𝜆 makes 

the model simpler, increases bias and reduces variance. It can 

have any value from 0 to positive infinity. 

9.2.2 Lasso Regression (L1) 
We can add a constraint to optimization to control model com-

plexity, so we need a way to measure the model complexity. 

This is the L1-Norm (Manhattan Distance/Taxicab norm): 

∑ |𝑤𝑗|
𝑝
𝑗=1  

We add it to MSE (this is number 2 from above):  

 

MSElasso is now minimized during training, so we have 2 

measures: performance/regression error: MSE, complexity/reg-

ularization term: Lasso 

Lasso is likely to force the weights to 0 as compared to Ridge. 

Lasso enables us perform feature selection -- making certains 

weights 0.  

9.2.3 Ridge vs Lasso 
Same: they make our predictions less sensitive to the training 

date and create less generalization error, they can be applied in 

the same context 

Ridge can shrink the slope asymptotically close to 0, Lasso to 0. 

Example: 𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑏 & 𝜆 increases 

Ridge: 𝑤1 & 𝑤2 shrink a bit, 𝑤3 & 𝑤4 shrink a lot 

Lasso: 𝑤1 & 𝑤2 shrink a bit, 𝑤3 & 𝑤4 shrink to 0 and go away 

So Lasso is better for models which contain a lot of useless vari-

ables, Ridge does better when most of the variables are useful. 

 

 

10 FEATURE SCALING 
For example, we have a dataset with the number of bedrooms 

𝑥𝑏𝑟𝑜𝑜𝑚𝑠  which ranges from 1 to 8 and the sqft area 𝑥𝑎𝑟𝑒𝑎 which 

ranges from 370 to 4980. 

A multiple linear regression model to predict the price would 

look like this: 

 

As we can see, 𝑥𝑏𝑟𝑜𝑜𝑚𝑠  has almost no impact on the MSE 

(price), because of the small numbers in comparison to 𝑥𝑎𝑟𝑒𝑎. 

Therefore 𝑤𝑏𝑟𝑜𝑜𝑚𝑠  must be much higher than 𝑤𝑎𝑟𝑒𝑎. The prob-

lem is that regularization penalizes larger weights (smaller 

scales) more than smaller weights (larger scales), so we must 

put all the features on equal footing. 

When using Gradient descent, the derivatives of the parame-

ters will be much bigger for the area than for the bedrooms. 

Therefore, the steps will also be much bigger for the area than 

for the bedrooms. 



The goal is that both should have equal impact on MSE. The 

Sklearn Standardscaler will rescale a dataset to a mean of 0 and 

standard deviation of 1. 

Raw 2 4 4 4 5 5 7 9 

Normalized -1.403 -0.468 -0.468 -0.468 0 0 0.935 1.871 

𝑋𝑚𝑒𝑎𝑛 =
2 + 4 + 4 + 4 + 5 + 5 + 7 + 9

8
= 5 

 

Sample Std. Deviation = s =  

 

𝑠 = 2.138 

Normalized value = xstd = 
𝑥−𝑋𝑚𝑒𝑎𝑛

𝑠
 

Example for 2: 
2−5

2.138
= −1.403 

After doing this, 𝑥𝑏𝑟𝑜𝑜𝑚𝑠  ranges from about -2.6 to 8.5 and 

𝑥𝑎𝑟𝑒𝑎  ranges from about -2 to 3.6.  

11 CROSS-VALIDATION 
2-way holdout: 

 

Optionally, the trained model with fixed hyperparameters from 

above is trained again on the whole data. That will then be the 

final model. 

3-way holdout: 

 

 

 

Optionally, the trained model with fixed hyperparameters from 

above is trained again on the whole data. That will then be the 

final model. 

Problems with holdout: training error may be too optimistic 

about generalization, test error may be too pessimistic about 

generalization, test and training data may not be representa-

tive over all dataset 

The solution: cross-validation, it is an extension of  the holdout 

method, it's a technique to compare different parameter values 

(model evaluation), used to obtain a better estimate of the gen-

eralization error, we only study k-fold cross-validation, there 

are others 

 

used for training, used for validation 

The data is divided into 𝑘 parts, every part is used once for vali-

dation and 𝑘 − 1 times for training, typical values for 𝑘 are 5, 

10 or 𝑁, do not preprocess the whole dataset, apply the pre-

processing pipeline (e.g. standardization) to each split. When 

comparing different models with CV, the best model is the one 

with the highest average performance over all folds. 

Use case 1: estimation of generalization error 

Use case 2: model selection using K-Fold CV (different hyperpa-

rameters like 𝜆 for ridge regression) 

Leave one out cross validation (LOOCV): k=N splits the data 

into as many parts as there are data points 

 

12 LOGISTIC REGRESSION 
Binary classification: 2 possible classes, e.g. win/lose 

Multi-class classification: >2 possible classes, e.g. win/tie/lose 

Example: We have a dataset about MSE admission decisions. 

The parameters are: 𝑥1=years of working experience, 𝑥2=BS 

grades, 𝑥3=secondary school grades, 𝑦=1/0 (accepted/rejected) 

 

Our model should predict the probability of being accepted on 

a scale of 0 to 1. We define a threshold (e.g. 0.5) from where 

applicants are accepted. Linear regression is not suited be-

cause: output values are not discrete (0/1), but continuous 

(−∞𝑡𝑜∞), we model the response 𝑦 by minimizing the MSE 

and threshold it to get the probability, but that has nothing to 

do with the classification probabilities. 

We are interested in probabilistic output: 

 

We want to optimize using the probabilities and not the re-
sponse. That can be done with the sigmoid function: 

 

 

We can plug in our features (𝑥𝑖) and the weights (𝑤𝑖) are un-

known, they need to be learned. 

 

 

 

How to find the weights? 

MSE no suited, because it is not con-

vex for this non-linear model with 

many local minima, in which GD can 

get stuck 

we can use GD to find the optimum 

weights 𝑊𝑇with the convex Maxi-

mum Likelihood cost function 

Maximum Likelihood: maximize likelihood of correct predic-

tion, 𝑝 is close to 1 when 𝑦 = 1 and 𝑝 is close to 0 when 𝑦 = 0, 

the goal of this algorithm is to find the best fitting squiggle (sig-

moid for the points) 

Function to be minimized: 

 

Decision Boundary for this sigmoid function: 

Pr(𝑥) =
1

1 + 𝑒−𝑧
 

→ 𝑧 = (𝑥1 + 7) 

0.5 =
1

1 + 𝑒−𝑧
→ 𝑧 = 0 

0 = 𝑥1 + 7 → 𝑥1 = −7 

 

 

 

 

13 EVALUATION OF CLASSIFICATION 
How to evaluate the classifier models, accuracy is not always a 

preferred performance measure for classifier 

 

Confusion matrix: 

 



13.1 ACCURACY 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑛
 

most common metric to evaluate classifiers, does not fully de-

scribe the performance of the model 

Negative example: 10 out of 1000 patients are sick, the test 

says 1000 are not sick, 
0+990

1000
= 99.9% accuracy 

13.2 ERROR 

𝐸𝑟𝑟𝑜𝑟 =
𝐹𝑃 + 𝐹𝑁

𝑛
 

13.3 SENSITIVITY/RECALL/TRUE POSITIVE RATE 

(TPR) 
false negatives worse than false positives at e.g. corona tests, 

FN=person spreads it further, FP=healthy person quarantined 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

13.4 MISS RATE/FALSE NEGATIVE RATE (FNR) 
𝐹𝑁𝑅 = 1 − 𝑇𝑃𝑅 

13.5 SPECIFICITY 
the percentage of people who test negative for a disease 

among a group of people who do not have the disease 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

13.6 PRECISION 
false positives are worse than false negatives at e.g. email spam 

classification, FN=spam in inbox, FP=important mail in spam 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

13.7 FALSE POSITIVE RATE (FPR) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

13.8 F1-SCORE 
Combination of precision and recall, both are high → F1-Score 

high, one is low → F1-Score is low 

𝐹1 =
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Accurracy, error, recall and precision are useful, but can be 

fooled. Decide which errors are more expensive than others. It 

is decided by the problem at hand, which one is important.  

𝐹𝛽 =
(1 + 𝛽2) ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝛽 = 0 → 𝐹𝛽 = 𝑃 

𝛽 = 1 → 𝐹𝛽 = 𝐹1 

𝛽 = ∞ → 𝐹𝛽 = 𝑅 

 

 

 

13.9 RECEIVER OPERATING CHARACTERISTICS (ROC) 
The area under the 

curve (AUC) should be 

as big as possible, per-

fect would be area=1 

 

 

 

 

 

 

If you have a value for FPR and TPR, you have one point of the 

curve. You need to evaluate a classifier with different thresh-

olds in the interval [0,1] to get many points which then create 

the curve. 

14 KNN CLASSIFICATION 

14.1 DECISION BOUNDARY 

 

Y-Axis=years of work experience, X-Axis=BSc grade, blue 

line=linear decision boundary for logistic regression 

 

When the classes are not linearly separable and we have addi-

tional information about the structure of the data, we can ap-

ply a non-linear transformation. 

Logistic Regression can be extended to multiple classes: 

• One-vs-rest: Single classifier trained for each class c with 

the samples of class c as positive samples and all other 

samples as negatives. All classifiers are applied to an un-

seen sample and the highest p is the class. 

• One-vs-one: Train a classifier to distinguish between each 

pair of classes. All classifiers are applied to an unseen sam-

ple and the results combined produce final classification. 

Logistic regression: parametric model (W), that needs training 

to find optimum W, computer the probabilities, not the class, a 

suitable threshold needs to be determined (ROC/AUC, FPR vs. 

TPR) to decide the class, multiple classes can be supported re-

cursively, linear decision boundaries between classes, non-lin-

ear boundaries can be supported, finding the best fit via regu-

larization 

Dream Method: No training, predicts classes, supports multiple 

classes, non-linear decision boundaries 

Solution: KNN 

14.2 K NEAREST NEIGHBOURS 
"A datapoint is known 

by the company it 

keeps." 

 

14.2.1 Prepara-

tions 
1. Load the training 

as well as test 

data. 

2. Choose the value 

of 𝑘 

3. Choose a distance 

metric 

For choosing k and distance metric we can use: test-train split, 

cross validation, accuracy, precision, recall 

14.2.2 For each test data points xtest 
1. For all training data 𝑥𝑡𝑟𝑎𝑖𝑛, calculate the 𝑑(𝑥𝑡𝑒𝑠𝑡 , 𝑥𝑡𝑟𝑎𝑖𝑛) 

2. Sort training data in the ascending order of distance 

3. Choose the first 𝑘 data points from the sorted list 

4. Return the most frequently occurring class among the 𝑘 

data points as the classification result 

14.2.3 Distance metrics 

 

Manhattan:   Euclidean: 

 

14.2.4 Properties 
Hyperparameters: k and distance metric, both have a big im-

pact on the decision boundaries and with that a big impact on 

the precision, recall and accuracy, with 𝑘 = 𝑁, every datapoint 

is classified the same, bigger 𝑘 → lower variance, higher bias 

Advantages: easy and simple ML model, few hyperparameters 

to tune 

Disadvantages: k should be wisely selected, large computation 

cost during runtime if dataset is large, not efficient for high di-

mensional datasets, proper scaling should be provided for fair 

treatment among features 

15 NAIVE BAYES 
applied for classification, simple to implement, works well for 

smaller datasets, no training phase, used extensively when data 

contains categorical features but not much used in numerical 

features 

We have the following dataset: 

 

We want to know the probability, that an email containing "to-

morrow" is spam, more formal: Pr(𝑠𝑝𝑎𝑚|"tomorrow") 

Bayes Rule: 

Pr(𝑠𝑝𝑎𝑚|"tomorrow") = 𝑃𝑟(𝑠𝑝𝑎𝑚) ∙
Pr("𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤"|𝑠𝑝𝑎𝑚)

Pr("tomorrow")
  

 

Let's calculate all the factors of bayes rule: 

 

𝑃𝑟(𝑠𝑝𝑎𝑚) =
#𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑒𝑛𝑡𝑟𝑖𝑒𝑠𝑡ℎ𝑎𝑡𝑎𝑟𝑒𝑠𝑝𝑎𝑚

#𝑡𝑜𝑡𝑎𝑙𝑒𝑛𝑡𝑟𝑖𝑒𝑠
=
2

4
=
1

2
 

 

Pr("tomorrow") =
#𝑒𝑛𝑡𝑟𝑖𝑒𝑠𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔"𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤"

#𝑡𝑜𝑡𝑎𝑙𝑒𝑛𝑡𝑟𝑖𝑒𝑠
=
4

4
= 1 

 

Pr("tomorrow"|𝑠𝑝𝑎𝑚)

=
#𝑠𝑝𝑎𝑚𝑒𝑛𝑡𝑟𝑖𝑒𝑠𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔"tomorrow"

#𝑠𝑝𝑎𝑚𝑒𝑛𝑡𝑟𝑖𝑒𝑠
=
2

2
= 1 

 

Pr(𝑠𝑝𝑎𝑚|"tomorrow") =
1

2
∙
1

1
= 0.5 

16 K-MEANS CLUSTERING 
We are given data (features, x), without labels (y). But we can 

still learn something from the data because it has some struc-

ture. The goal of unsupervised learning is to self-discover pat-

terns from the data. Data without any structure is the excep-

tion, but the structure can be hidden by noise. The human 

brain is extremely efficient at noting patterns in data. 



Algorithms are also extremely efficient at dealing with large 

and high-dimensional datasets, where humans fail. 

Applications that use clustering: social network analysis, astro-

nomical data, find similar articles, market segmentation, rec-

ommendation systems 

16.1 NAÏVE K-MEANS 
1. Let us assume that we know the number of clusters 𝑘𝑐 

2. Initialize the value of 𝑘 cluster centres/means/centroids 

(𝑐1, 𝑐2, … , 𝑐𝑘𝑐) 

3. Assignment: 

a. Find the squared Euclidean distance between the cen-

tres and all the data points. 

 
Example: 𝑑((1,2), (3,4)) = (3 − 1)2 + (4 − 2)2 = 8 

b. Assign each data point to the cluster of the nearest cen-

tre 

 
4. Update: Each cluster now potentially has a new centre. 

We update the centre for each cluster, the new centres 

(𝑐1
′ , 𝑐2

′ , … , 𝑐𝑘𝑐
′ ) = average of all data points in the cluster 

 

Example: center of (1,2) and (3,4): (
1+3

2
,
2+4

2
) = (2,3) 

5. If some stopping criterion met, done. Else, go to step 3. 

That means after every new data point, steps 3 and 4 are 

repeated. 

16.2 PROPERTIES 
Initialization: performance depends on the random initializa-

tions of the seeds for the centers, some seeds can result in 

poor convergence rate or suboptimal clustering, if initial cen-

ters are very close together, we need a lot of iterations, there-

fore run it multiple times with different random initializations 

and check if the clusters are stable 

Possible stopping criterions: centers don't change, datapoints 

assigned to specific cluster remain the same, set threshold for 

distance of datapoints from their centers, fixed number of iter-

ations is reached (attention: insufficient iterations lead to poor 

cluster quality, choose wisely) 

Standardization: Features with large values may dominate the 

distance value, features with small values will have no impact 

on the clustering (look at the Euclidean distance formula), 

therefore the features should be standardized beforce execut-

ing clustering 

Evaluating unsupervised learning models: we have no ground 

truth labels, therefore we cannot use the evaluation metrics 

from the supervised learning models like accuracy, precision, 

recall, etc. 

The goal of good clustering is, that for each cluster the distance 
of each cluster-member from its center is minimized. 

 

Inertia/Within-cluster sum-of-squares (WCSS): sum of squared 

distances of samples to their closest cluster center 

When we increase the number of clusters, when the number of 

clusters is equal to the number of data pointer → WCSS=0 

We can see an elbow at 3-4 clusters, 4 clusters would be a good 

choice here 

 

Silhouette score: How far away the data points in one cluster 

are, from the data points in another cluster. Formula for points: 

a = the average distance between each 

point within a cluster 

b = the average distance between a clus-

ter and its nearest neighbour cluster 

The range is [-1;1], the higher the better.  

Example: Cluster1 has points (2,5), (3,4) & (4,6), Cluster2 has 

points (6,10), (7,8) & (8.9), we want silhouette score of (2,5) 

a:  𝑑((2,5), (3,4)) = √(3 − 2)2 + (4 − 5)2 = √2 

𝑑((2,5), (4,6)) = √(4 − 2)2 + (6 − 5)2 = √5 

𝑎 =
√2 + √5

2
= 1.825 

 

b: 𝑑((2,5), (6,10)) = √(6 − 2)2 + (10 − 5)2 = √41 

 𝑑((2,5), (7,8)) = √(7 − 2)2 + (8 − 5)2 = √34 

 𝑑((2,5), (8,9)) = √(8 − 2)2 + (9 − 5)2 = √52 

 𝑏 =
√41+√34+√52

3
= 6.482 

 

6.482 − 1.825

6.482
= 0.784 

 

a good choice would be 4 or 5 clusters 

17 ENSEMBLE METHODS 
Wisdom of Crowd: When you have very difficult question to an-

swer and you don't know the answer, it is a good idea to ask 

many random people and then aggregate their answers. 

This can be applied to ML too, we can aggregate the results of 

several weak models, instead of finding the best model.  

Ensemble: a group of predictors 

 

Probability, that each model makes a correct prediction: 0.7 
Probability, that ensemble makes a correct prediction: 0.343 +

0.147 + 0.147 + 0.147 = 0.784 → ensemble is better 

Probability, that each model makes a wrong prediction: 0.3 
Probability, that ensemble makes a wrong prediction: 0.063 +

0.063 + 0.063 + 0.027 = 0.216 → ensemble is better 

But ensemble is not always better, there are cases where it per-

forms worse than one model. Ensemble can be a strong learner 

when: 

• Weak learners/models/predictors are independent from 

one another and make uncorrelated errors 

• There is a sufficient number of weak learners 

• The models make different types of errors 

• The models are not trained on the same data (they will 

make the same type of error otherwise) 

• The models are better than random models 

Diverse models use: 

• Different algorithms (e.g. KNN & Logistic regression) 

• Different hyperparameters (KNN: various k, Regression: 

various regularization parameters) 

• Different training data (split and/or preprocess data, cross 

validation, features engineering) 

Training is faster, because the different learners are trained 

faster and can the training of them can be done in parallel 

 

 

 

 

 

17.1 VOTING 

17.1.1 Hard voting 
class that gets the most votes from the different learners 

Hard voting with weights: we have 3 learners with weights 

[0.1, 0.3, 0.6] and their classification is [𝑠𝑝𝑎𝑚, 𝑠𝑝𝑎𝑚, ℎ𝑎𝑚] 

𝑠𝑢𝑚𝑠𝑝𝑎𝑚 = 𝑤1 ∙ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛1 == 𝑠𝑝𝑎𝑚) + 𝑤2

∙ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛2 == 𝑠𝑝𝑎𝑚) + 𝑤3

∙ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛3 == 𝑠𝑝𝑎𝑚)

= 0.1 ∙ 1 + 0.3 ∙ 1 + 0.6 ∙ 0 = 0.4 

 

𝑠𝑢𝑚ℎ𝑎𝑚 = 𝑤1 ∙ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛1 == ℎ𝑎𝑚) + 𝑤2

∙ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛2 == ℎ𝑎𝑚) + 𝑤3

∙ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛3 == ℎ𝑎𝑚)

= 0.1 ∙ 0 + 0.3 ∙ 0 + 0.6 ∙ 1 = 0.6 

The result is 𝒉𝒂𝒎, because the sum is bigger than 0.5. Note 

that spam has 2 votes and ham only 1 vote with more weight. 

17.1.2 Soft voting 
Predict the class with the highest class probability, averaged 

over all classifiers. Only possible if predictions are probabilities 

aka the classifiers are well calibrated. 

Soft voting with weights: we have 3 classifiers with weights  

[0.1, 0.3, 0.6] and 3 classes 

Classifier1: [Pr(𝑐𝑙𝑎𝑠𝑠1) = 0.85, [Pr(𝑐𝑙𝑎𝑠𝑠2) = 0.05,

[Pr(𝑐𝑙𝑎𝑠𝑠3) = 0.15] 

Classifier2: [Pr(𝑐𝑙𝑎𝑠𝑠1) = 0.15, [Pr(𝑐𝑙𝑎𝑠𝑠2) = 0.2,

[Pr(𝑐𝑙𝑎𝑠𝑠3) = 0.7] 

Classifier3: [Pr(𝑐𝑙𝑎𝑠𝑠1) = 0.65, [Pr(𝑐𝑙𝑎𝑠𝑠2) = 0.03,

[Pr(𝑐𝑙𝑎𝑠𝑠3) = 0.9] 

Class1: 0.1 ∙ 0.85 + 0.3 ∙ 0.15 + 0.6 ∙ 0.65 = 0.325 

Class2: 0.1 ∙ 0.05 + 0.3 ∙ 0.2 + 0.6 ∙ 0.03 = 0.083 

Class3: 0.1 ∙ 0.15 + 0.3 ∙ 0.7 + 0.6 ∙ 0.9 = 0.5166 

Winner is 𝑪𝒍𝒂𝒔𝒔𝟑, because it has the highest probability 

17.2 BOOTSTRAP AGGREGATING (BAGGING) 
Bagging methods form a class of algorithms which build several 

instances of a black-box estimator on random subsets of the 

original training set and then aggregate their individual predic-

tions to form a final prediction. Reduces variance, can increase 

bias slightly 

 

sampling with replacement: a data point can be selected more 

than once for different subsets of data (Bagging) 



 

the individual (simple!) models have a relatively low bias and 

high variance, bagging (reuse of data) reduces variance, bag-

ging provides a way to reduce overfitting, bagging methods 

work best with complex models 

sampling without replacement: a data point can be selected 

only once by a subset of data (Pasting) 

Out of bag (oob) evaluation: because we are training the dif-

ferent models on subsets of data, they can be evaluated on the 

data, which is not in the subset. There is no need for a separate 

validation or cross-validation set. 

No free lunch theorem: Why does it make sense to invest 

(train) multiple simple ("stupid") models, instead of putting all 

our effort into optimizing a single model? "no single machine 

learning algorithm is universally the best-performing algorithm 

for all problems" 

Random Subspaces: random subsets of the features 

Random Patches: Random subsets of both samples & features 

Different features: bagging can be done not only on different 

samples but also on different features, each predictor can be 

trained on random subset of features 

17.3 BOOSTING 
train predictors sequentially, each predictor tries to correct its 

predecessor, each predictor improves on the weakness of its 

predecessor, reduces bias, can increase variance slightly 

AdaBoost (Adaptive Boosting):  

1. AdaBoost assigns equal weights to each training sample 

(instance weights) 

2. AdaBoost trains a model to fit the given data 

3. AdaBoost increases the weight on the misclassified sam-

ples (instance weights), the misclassified samples will 

make up a larger part of the next classifiers training set 

and hopefully the next classifier trained will perform bet-

ter on them 

 

 
4. Stop if the desired number of estimators are trained 

5. AdaBoost then trains a next classifier (step 2) 

6. For the Ensemble, each classifier’s weight is calculated 

based on its accuracy (predictor weight or α), more accu-

rate classifiers are given more weight 

 
Example from step 3:  

𝑎𝑐𝑐𝑢𝑟𝑟𝑎𝑐𝑦 =
11

14
= 0.7 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑤𝑒𝑖𝑔ℎ𝑡 = ln (
11

3
) = 1.3 

 
Error rate=0.5 → α=0 because it's random guessing 

Error rate approaching 0 → exponentially more weight 

Error rate approaching 1 → exponentially negative weight, 

do the opposite than this classifier says 

7. AdaBoost makes predicition based on Hard voting with 

weights 

Other Boosting methods: Gradient Boosting, Extreme Gradient 

Boosting, CatBoost, LightGBM: 

17.4 COEFFICIENT OF DETERMINATION (R2) 

 

18 ARTIFICIAL NEURAL NETWORKS 

18.1 ARTIFICIAL NEURON/THRESHOLD LOGIC UNIT 

(TLU): 
The TLUs have been trained to find the right values for the 

weights and bias, a technique for that is backpropagation. 

 

The neuron calculates the sum of the weighted input (dot prod-

uct �⃗� ∙ �⃗⃗⃗�), adds a bias 𝑏, and passes it through a nonlinear acti-

vation function (input 𝑥 → output 𝑦). Examples of activation 

functions are the sigmoid function, Tanh or Rectified Linear 

Unit (ReLU). 

 

Step functions are also specific types of activation functions. 

They are very useful for binary classification problems. But they 

are not differentiable, therefore they cannot be used with 

backpropagation. Examples of step functions: 

 

18.2 PERCEPTRON 
Perceptron is one of the simplest Artificial neural network ar-

chitectures. It was introduced by Frank Rosenblatt in 1957s. 

The nodes are TLUs, and they use the Heaviside step function. 

Single-Layer Perceptron: There is only TLU. This type is limited 

to a linear decision boundary and cannot learn complex pat-

terns. It can easily classify instances simultaneously into multi-

ple classes It can implement the logical gates AND, OR & NOT. 

Multilayer Perceptron: Multilayer perceptron's possess en-

hanced processing capabilities as they consist of two or more 

layers (1x input, >0x hidden, 1x output), adept at handling more 

complex patterns and relationships within the data. It is also 

called Artificial Neural Network (ANN). 

Deep neural networks (DNNs): ANNs with multiple hidden lay-

ers. They are trained like other supervised learning techniques, 

on a dataset with known input and output. We start with ran-

dom weights and an optimizer like SGD reduces a loss function 

like MSE using the ANN output and the known output that 

should appear. Alternatives to MSE and maximum likelihood: 

 

Backpropagation: An efficient algorithm for training a DNN. It 

is basically GD in reverse-mode.  

Forward Pass: give the DNN a sample, let it go all the way to 

the end and measure error using a loss function 

Backward Pass: go through each layer in reverse order to 

measure error contributions from each connection, finally 

tweak the connection weights to reduce the error (GD) 

Hyperparameters of backpropagation: GD learning rate, num-

ber of steps for training, batch vs mini-batch vs SGD, number of 

layers, number of neurons in layer, activation functions used, 

regularization parameters (L1/L2/Lambda) 

An example of a more complex pattern like XOR (3 neurons, 2 

layers, 11 trainable parameters): 



 

 

Draw ANN: two dimensional input, first hidden layer with 3 

neurons, second hidden layer with 2 neurons, output layer with 

1 neuron and without activation function 

 

Calculate number of parameters: 6 unit input layer, 5 unit hid-

den layer, 3 unit output layer 

 

hidden layer: weight for each unit of input layer and a bias per 

unit: (6 ∙ 5) + 5 = 35 

output layer: weight for each unit of hidden layer and a bias per 

unit: (5 ∙ 3) + 3 = 18 

𝑇𝑜𝑡𝑎𝑙: 35 + 18 = 53 

 

 

 

 

18.3 SOFTMAX 
Takes in a vector of raw outputs of the neural network and re-

turns a vector of probability scores for a sample belonging to 

class 𝑘.  

 

 

Example: classes cat, dog, bird, fish, NN-output: [1,6,2,3] 

𝑝𝑑𝑜𝑔 =
𝑒6

𝑒1 + 𝑒6 + 𝑒2 + 𝑒3
= 0.93 

18.4 UNIVERSAL APPROXIMATION THEOREM 
Neural networks can represent a wide variety of interesting 

functions when given appropriate weights. On the other hand, 

they typically do not provide a construction for the weights, but 

merely state that such a construction is possible. 

Most universal approximation theorems can be parsed into two 

classes: 

• The first quantifies the approximation capabilities of neu-

ral networks with an arbitrary number of artificial neurons 

("arbitrary width" case) 

• the second focuses on the case with an arbitrary number 

of hidden layers, each containing a limited number of arti-

ficial neurons ("arbitrary depth" case) 

Multilayer feed-forward networks with as few as one hidden 

layer are universal approximators. The multilayer feed-forward 

architecture gives neural networks the potential of being uni-

versal approximators. 


