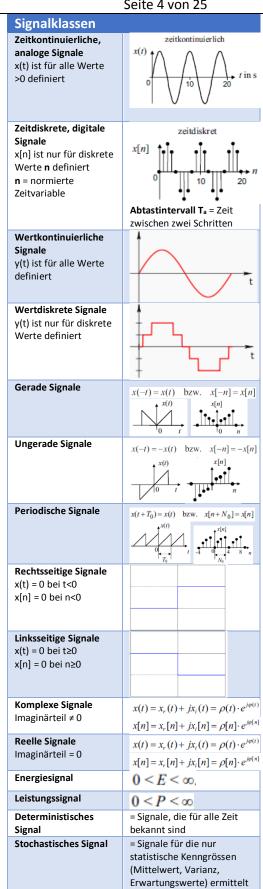
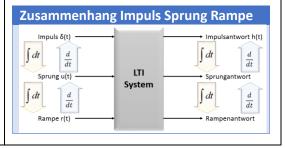


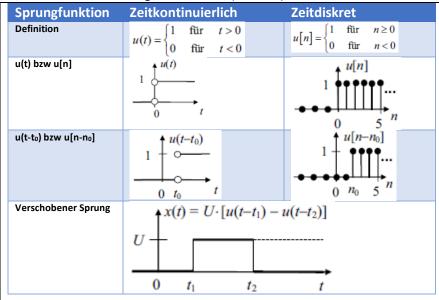
Signale Kla	assifizieren
Signal	$x(t) = x_g(t) + x_u(t)$ bzw. $x[n] = x_g[n] + x_u[n]$
Gerader Anteil	$x_g(t) = \frac{x(t) + x(-t)}{2}$ bzw. $x_g[n] = \frac{x[n] + x[-n]}{2}$
Ungerader Anteil	$x_u(t) = \frac{x(t) - x(-t)}{2}$ bzw. $x_u[n] = \frac{x[n] - x[-n]}{2}$
Normierte Energie	$E = \int_{-\infty}^{+\infty} x(t) ^2 dt \text{bzw.} \qquad E = \sum_{n=-\infty}^{+\infty} x[n] ^2$ $\infty \text{ ersetzen durch Signal grenzen}$
Normierte Leistung	$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} \left x(t) \right ^2 dt \text{bzw.} P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{+N}$ ∞ ersetzen durch Signalgrenzen

Rechteckimpuls	Zeitkontinuierlich	Zeitdiskret
Definition	$\Pi_{\tau}(t) = \begin{cases} 1 & \text{für } t < T/2 \\ 0 & \text{sonst} \end{cases}$	$\Pi_{N}[n] = \begin{cases} 1 & \text{für } n \le N \\ 0 & \text{sonst} \end{cases}$
$\Pi_T(t)_{\mathbf{bzw}}\Pi_N[n]$	$ \begin{array}{c cccc} & \Pi_T(t) \\ \hline & & \\ & -T/2 & 0 & T/2 & t \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Zusammenhang zwischen Rechteckimpuls und Dirac-Impuls		$\delta(t) = \frac{du(t)}{dt}$





werden können



Dirac-Impuls	Zeitkontinuierlich	Zeitdiskret
Definition	$\int_{-\infty}^{+\infty} x(t)\delta(t) dt = x(0)$	$\delta[n] = \begin{cases} 1 & \text{für } n = 0 \\ 0 & \text{für } n \neq 0 \end{cases}$
		$\delta[n] = u[n] - u[n-1]$
$\delta(t)_{\text{bzw}} \delta[n]$	$ \begin{array}{c} 1 \\ $	$ \begin{array}{c c} \bullet & \bullet \\ \bullet & \bullet \\ 0 & \bullet & \bullet \\ \end{array} $
Verschiebung	$\int_{-\infty}^{+\infty} x(t)\delta(t-t_0) dt$ $= \int_{-\infty}^{+\infty} x(t+t_0)\delta(t) dt = x(t_0)$	$\delta[n-k] = \begin{cases} 1 & \text{für} & n=k \\ 0 & \text{für} & n \neq k \end{cases}$
Zeitskalierung	$\delta(at) = \frac{\delta(t)}{ a } \text{für} a \neq 0$	
Symmetrie	$\delta(-t) = \delta(t)$	
Ausblendeigenschaft t = 0	$x(t)\delta(t) = x(0)\delta(t)$	$x[n] \cdot \delta[n] = x[0] \cdot \delta[n]$
Ausblendeigenschaft t = t ₀	$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$	$x[n] \cdot \delta[n-k] = x[k] \cdot \delta[n-k]$

Sign	alklassen	
	zeitkontinuierlich	zeitdiskret
wertkontinuierlich	analoges Signal	
wertdiskret	digitales Signal (Schaltungstechni	k) digitales Signal (Theorie)
	Differentialgleichung $\dot{x}(t) = -x(t)$	Differenzengleichung $x[n] - x[n-1] = -x[n]$

	Seite 5 V	7011 23
Systemklas	sen: diskret, ko	ontinuierlich
Gleichung	Differential-	Differenzen-
	gleichung	gleichung
Definitions-	(zeit-)	(zeit-)diskret,
bereich	kontinuierlich	diskontinuierlich
Werte-	Wert-	Wertdiskret,
bereich	kontinuierlich	amplitudendiskret
	(wert-)	Nicht beschränkt
	beschränkt	
Unterschiede	Zeit-	Zeitdiskretes
	kontinuieriches	Verarbeiten der
	Verarbeiten der	Signale der
	Signale der Zeit-	Laufvariablen n
	variablen t (Zeit-	(keine Zeit-
	information)	informationen)
Gemeinsam-	Beide beschreiben dynamische	
keiten	Systeme	
Weitere	Linear	Nicht linear
Eigenschaften	Zeitinvariant	Zeitvariant
	Kausal	Nicht kausal
	Stabil	Nicht stabil
	Dynamisch	Statisch
	(mit Gedächtnis)	(ohne
		Gedächtnis)
	Deterministisch	Stochastisch
	(kein Zufall)	(Zufall, W-Keit)
Klassifizieren	Blackbox:	
	Impulsantwort, Sp	
	Whitebox:	Whitebox:
	Differential-	Differenzen-
	gleichung,	gleichung,
	Signalflussgraph,	Signalflussgraph,
	Übertragungs-	Übertragungs-
	funktion	funktion
	Pole	(Pole)
	Ausschwingen / Ei	
	Transiente / Statio	onäre

Systeme – mit Ausgleich / ohne		
Ausgleic		
System	•	Ausgang strebt nach Sprung am
mit		Eingang einem Beharrungswert zu
Ausgleich	•	BIBO-stabil
	•	Bsp.: PT ₁ -Glied
System	•	Ausgang strebt nach Sprung am
ohne		Eingang keinem Beharrungswert zu
Ausgleich	•	Nicht BIBO-Stabil
	•	Bsp.: I-Glied, IT ₁ -Glied sowie alle
		instabilen Systeme

Systeme: Begriffe	
BIBO-	"Bounded Input Bounded Output"
Stabilität	System reagiert auf beliebiges,
	beschränktes Eingangssignal mit
	beschränktem Ausgangssignal.
System	Impulssignal für maximal verwertbare
testen mit	Informationen im Ausgangssignal
Impuls	
Verwertung	Systemeigenschaften überprüfen:
der Impuls-	(Kausalität, Stabilität,
antwort	Gedächtnislänge)
	Mit Hilfe der Faltungsoperation:
	(Berechnung des Ausgangssignals zu
	einem beliebigen Eingangssignal)

Zeitinvariante / Zeitvariante Systeme	
Zeitinvariant	= System nicht zeitabhängig, verhält
	sich bei t=0 gleich wie bei t=x.
Zeitvariant	= System zeitabhängig, verhält sich
	bei t=0 anders als bei t=x.

Ausgangssignal hängt nur vom

Output = Spannung u(t), Input =

Bsp: Pendel, Heizung, gleitender

Verlauf des Ausgangssignals y(t)

hängt zu einer beliebigen Zeit t₁

aktuellen Eingangssignal ab. **Bsp**: Tragwerk, Widerstand R,

Ausgangssignal hängt von

aktuellem und früheren

Mittelwert mit Breite M

Eingangssignalen ab.

System mit/ohne Gedächtnis

Kausale / Akausale Systeme

Strom i(t)

 $u(t) = R \cdot i(t)$

Ohne Gedächtnis

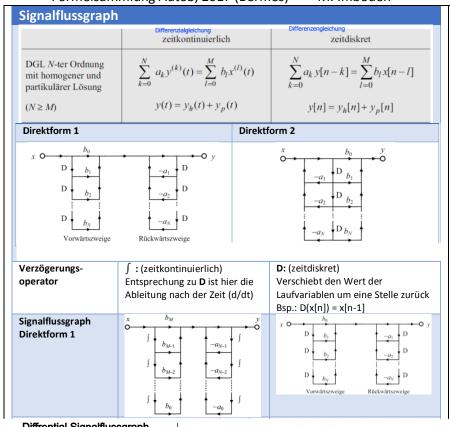
Mit Gedächtnis

Kausale Systeme

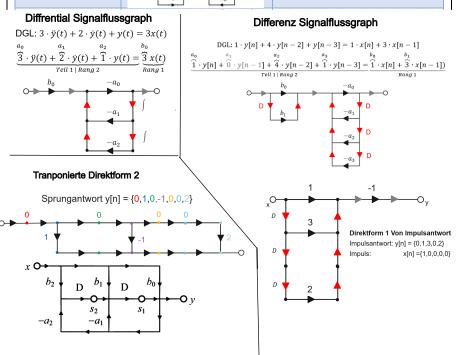
(= statische

(dynamisch)

(statisch)



Systeme) nur von Eingangswerten x(t) mit t≤ t₁ ab. Physikalische (Reale) Systeme Nicht in die Zukunft sind immer kausal, weil die Zeit mit im Spiel ist (Ursache-Wirkung) Akausale Systeme Digitale Signalverarbeitung: (= dynamische Speichernde Systeme, Systeme) Ausgangssignale hängen von Eingang und früheren Eingängen Auch in Zukunft



Linea	ire Systeme
	System y(t)
	2*u(t) 2*y(t)
	u1(t) System y1(t)
	System y2(t)
	$ \begin{array}{c c} u1(t) + u2(t) \\ \hline \end{array} $ System $ \begin{array}{c c} y1(t) + y2(t) \\ \hline \end{array} $

Physikalisches Systemverhalten

ermitteln

Signalflussgraph zu	Übertragungsfunktionen
Kontinuierlich	Diskret
$H(s) = \frac{b_0 + b_1 s + b_2 s^2 + b_3 s^3 + b_4 s^4 \dots}{a_0 + a_1 s + a_2 s^2 + a_3 s^3 \dots}$	$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + b_4 z^{-4}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + a_3 z^{-3} \dots}$

System mathematisch beschreiben
und analytisch lösen.
Lösung ist exakt.
Bsp.: homo DGL, inhomo DGL mit
bestimmten Eingangssignalen,
Tragwerke im Schnittverfahren
System mathematisch beschreiben
und numerisch lösen.
Lösung ist nicht exakt aber
annähernd.
Bsp.: inhomo DGL mit beliebigem
Eingang, FEM
Keine Systembeschreibung sondern
Verwendung von Sensoren zur
Messung der Ausgangssignale.
Lösung entwpricht der Realität +
Fehler (Sensordynamik, Rauschen,
Störungen)

Kausalitätsprinzip		
In Worten	Die Ursache muss vor der Wirkung liegen.	
lm Zeitbereich	$b_m \frac{d^m u}{dt^m} + \dots + b_1 \frac{du}{dt} + b_0 = a_n \frac{d^n y}{dt^n} + \dots + a_1 \frac{dy}{dt} + a_0 \mathbf{n} \ \geq \mathbf{m}$ Eingangsseite	
Im Bild- bereich der Laplace- TraFo	$G(s) = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} \text{ Eingang}$ $\text{char.pol ist unten -> Polstellen -> Stabilität}$ $\text{Stabilität ist ne Eigenschaft des Systems}$ $\text{Nennergrad } \mathbf{n} \geq \text{Z\"{ahlergrad} } \mathbf{m}$ (= kausal)	
Regelungs- Freaks- Lingo	'Das System ist real.''Der Regler ist realisierbar.'	

Beispiele realer Systeme			
1. Ordnung	Mechanisch	Dämpfer	
	Elektrisch	RC-Netzwerk, RL-Netzwerk	
	Thermisch Heizung		
	Allgemein	Verzögerung 1. Ordnung (PT ₁ -Verhalten)	
2. Ordnung	Mechanisch	ch Feder-Masse, Feder-Masse-Dämpfer, Pendel	
	Elektrisch RLC-Netzwerk (Schwingkreis)		
	Allgemein	Schwingfähige Systeme (PT ₂ -Verhalten)	

Zeitdiskrete Faltung

Funktion 1 spiegeln und diese dann gegen Funktion 2 verschieben. Schrittweise jeden Punkt der Funktion 1 mit den entsprechenden Punkten der funktion 2 multiplizieren. Das ganze dann pro Schritt Addieren = Faltungsssumme.

Faitung der Impulsantwort mit dem neuen Eingangssignal x(k)
$y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]$

Faltung {1,2,3,4,9} * {1,2,0,

$fx = \{1,2,3,4,9\}$	$fy = \{1,3,0,5,3\}$
$fpx = 1 + 2x + 3x^2 + 4x^3$	$fpy = 1 + 3x + 0x^2 + 5x^3$
$+9x^{4}$	$+6x^{4}$

 $fpx \cdot fpy$ In Rehner mit expand($fpx \cdot fpy$)

$$expand\{(1+2x+3x^2+4x^3+9x^4)\cdot(1+3x+5x^3+6x^4)\}$$
 Ergibt
$$(1+5x+9x^2+18x^3+37x^4+54x^5+38x^6+69x^7+58x^8)$$
 Lösung
$$\{1,5,9,18,37,54,38,69,58\}$$

Zeitkontinuierliche Faltung

Funktion 1 spiegeln und diese dann gegen Funktion 2 verschieben.

$$x(t) * h(t) = \int_{-\infty}^{+\infty} x(\tau) \cdot h(t - \tau) d\tau$$

Fold Funktion mit Taschenrechner

Exponentielle Signale Eigenfunktion $x(t) = e^{st} = e^{\sigma t} \left[\cos(\omega t) + j \sin(\omega t) \right]$ Zeitkontinuierliche Signal exponentielle Signale mit komplexer $s = \sigma + j\omega$ Frequenz Einhüllende $x(t) = e^{\sigma t}$ Gedämpfte Angefachte Exponentielle Harmonische Exponentielle Exponentielle σ < () Re(x(t)) für $\sigma < 0$ Zeitdiskrete Signal $x[n] = z^n$ Eigenfunktion exponentielle Signale Harmonischer Fall $\sigma_n = 0$ und somit |z| = 1 $x[n] = e^{j\Omega n} = \cos(n\Omega) + j\sin(n\Omega)$ $z = e^{sT_a} = e^{\sigma T_a + j\omega T_a} = e^{\sigma_n + j\Omega}$ mit komplexer Frequenz $\Omega = \omega T_a$ normierte Kreisfrequenz

Eigenfunktion v(t)

Wenn Eigenfunktion durch das System gelassen wird Kommt eine z.B beim einem P-Regler eine

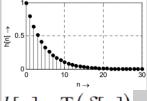
Mit K_P gestreckte Eigenfunktion wieder heraus

Kontinuierlich		Diskret		
	$v(t) = e^{st}$		$v[n] = z^n$	$Z = e^{sTa}$
				Ta = Takt
	$y(t) = h(t) * v(t) = \mathbf{H}(\mathbf{s}) \cdot \mathbf{e}^{\mathbf{s}t}$		y[n] = h[n] * v	$[n] = H(z) \cdot z^n$
	Beispiele	e^{-t} , e^{2t} , e^{-5t}	Z^{n-1} , Z^1 , Z^3	e^{2s} mit $Ta = 2$

Gleitender Mittelwert Akausal $\frac{1}{3} \cdot \sum_{k=0}^{n+1} x[k]$ Kausal $\frac{1}{3} \cdot \sum_{k=0}^{n} x[k]$

Systeme Klassifizieren

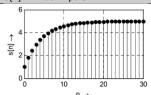
Impulsantwort Charakterisiert ein LTI-System vollständig. Durch Faltung mit der Impulsantwort kann die Antwort des Systems auf jeden beliebigen Eingang berechnet werden.



 $h[n] = T(\delta[n])$

 $h[n] = Impulsantwort \\ T = Systemoperator T (zeigt halt dass ein Eingangssignal verarbeitet wurde) \\ \delta[n] = Dirac-Impuls$

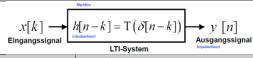
Sprungantwort



$$s[n] = \sum_{k=0}^{n} h[k]$$

Black Box System

Eingangs-Ausgangsgleichung für zeitdiskrete LTI-Systeme



Ausgangssignal Impulsantwort mit neuem Eingangssignal x[k] falten

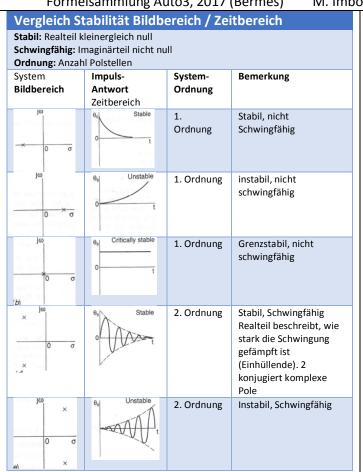
= (x*h)[n]

y[1] = x[0]*h[1-0] + x[1]*h[1-1] + x[2]*h[[1-2] + ...y[1] = Wert von y bei Schritt 1

Faltung der Impulsantwort mit dem neuen Eingangssignal x[k]

$$y[n] = \sum_{k = -\infty}^{\infty} x[k] \cdot h[n - k]$$

Verschiebung V	
$x(t) = u(t) \cdot (1-2t) + u(t-1) \cdot 3 \cdot (t-1)$	
Achtung Verschiebung um 1 auch im Term	
$Bei + 1 \ kommt \ [u(t) \cdot 3 \cdot t] \ dazu$	



Jeile 10 Voii 25			
Polsteller	n, Nullstellen		
Polstellen		Nullstellen	
= Koeffiziente	en der Ausgangsseite	= Koeffizienten der Eingangss	eite
Beschreiben Stabilität und Schwingfähigkeit ihres Systems		Beschreiben Kausalität und Frequenzübertragungsverhal zusammen mit den Polstellen (Antwort auf das konkrete Eingangssignal; welche Werte wie verarbeitet)	1.
Klassifizierung Polstellen: Realteil < 0 stabil Realteil = 0 grenzstabil Realteil > 0 instabil Imaginärteil ≠ schwingfähig			
_	ler Polstellen in der ahlenebene: "x"	Darstellung der Nulstellen in komplexen Zahlenebene: "o"	
Ein System mit mindestens einem Pol in der rechten Halbebene ist instabil		Ein System mit mehr Null- al Polstellen ist akausal.	
Kausalitätsprinzip			
In Worten	Die Ursache muss vor	der Wirkung liegen.	
lm Zeitbereich	$b_m rac{d^m u}{dt^m} + \cdots + b_1 rac{du}{dt} + \cdots$ Eingangsseite	$b_0 = a_n \frac{d^n y}{dt^n} + \dots + a_1 \frac{dy}{dt} + a_0$ Ausgangsseite	$n \ge m$
Im Bild-	h	$s^m \perp \ldots \perp h$, $s \perp h$	Fingang

 $G(s) = \frac{s_{n-1}}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$ Ausgang

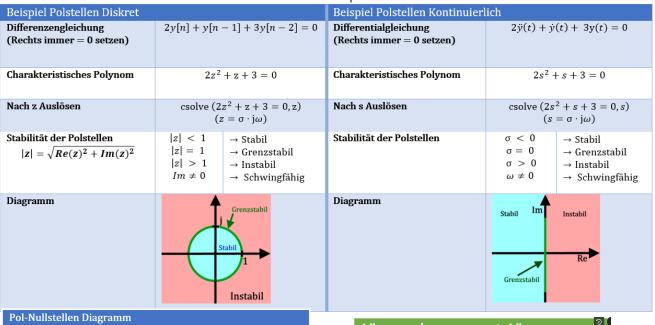
(= kausal)

char.pol ist unten -> Polstellen -> Stabilität Stabilität ist ne Eigenschaft des Systems

Nennergrad n ≥ Zählergrad m

'Das System ist real.'

'Der Regler ist realisierbar.'



bereich

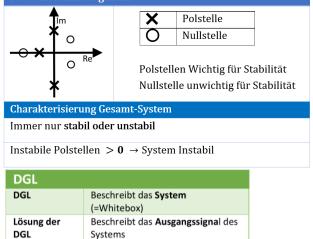
der Laplace-

TraFo

Regelungs-

Freaks-

Lingo



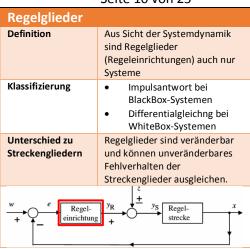
Lösung = homo. + part. Lösung:		
Homogene Lösung =	 Dynamisches Verhalten des ungestörten Systems mit Anfangsbedingungen (Eingang = 0, Anfangsbed können ungleich 0 sein) Bei linearen und stabilen Systemen: beschreibt Transientes Verhalten 	
Partikuläre Lösung =	 Dynamisches Verhalten des Systems unter Einfluss des Eingangs (Eingangssignal ungleich 0) Bei linearen und Stationären Systemen: beschreibt Stationäres Verhalten 	

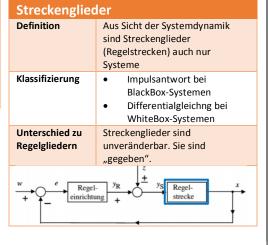
Torricisaminang Actos, 2017 (Bernies) Wi. imboden					
Störungsverhalten vs.			Übliche, gebräuchliche Regler-		
Führungs	sverhalten		Kombina	Kombinationen	
Störungs- verhalten verhalten		P-Regler	+ schnell - bleibende Regelabweichung		
Beschreibt	Auswirkung einer Störgrösse z	Auswirkung der Führungsgrösse w auf die	PI-Regler	+ keine bleibende Regelabweichung - schwächer gedämpft - langsamer	
auf die Regelgrösse x		Regelgrösse x	PD-Regler	+ sehr schnell, schnellster Regler - bleibende Regelabweichung	
Ermitteln Sollgrösse Störgrösse nullsetzen			- rauschempfindlich - neigt zu instabilität		
w(t) = 0 $z(t) = 0$		PID-	+ alle Vorteile		
		Regler	- am aufwändigsten zum Einstellen		

Eigenscha	ften von Regel-Strecken
Einteilungs- kriterien	Zeitliches VerhaltenMit Ausgleich/ohne Ausgleich
P-Strecke	 Ohne Gedächtnis Mit Ausgleich Bsp: Ohmscher Wiederstand, Hydraulisches System
PT1- Strecke	 Mit (endlichem) Gedächtnis Mit Ausgleich Bsp: Elektrische Heizung, Masse-Dämpfer-System
I-Strecke	 Mit (unendlichem) Gedächtnis Ohne Ausgleich Bsp: Füllstandsstrecke, Position Spindelantrieb

Rückkopplung		
Positive Rückkopplung	e(t) = ungebremst steigend wenn x(t) = w(t), also wenn der IST-Wert dem SOLL- Wert entspricht Positive Rückkopplung ist VERBOTEN! 1000 Jahre schlechtes Juju!	
Negative Rückkopplung	e(t) = 0 wenn x(t) = w(t), also wenn IST- Wert = SOLL-Wert Rückkopplung immer negativ!	

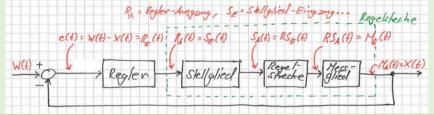
Festwertregelung vs.			
Folgeregelung			
Regelung	Regelung Festwertregelung Folgeregelung		
Führungs- grösse w(t)	Konstant	Veränderlich	
Haupt- aufgabe der Regelung	Korrektur von auftretenden Störungen	Möglichst schnell und genaues Nachführen der Regelgrösse	
Beispiele	Raumtemperatur- regelung, Füllstands- regelung, Tempomat auf Soll- geschwindigkeit, 	Autopilot am Flugzeug, Bahnregelung Robo-Arm, Bahnregelung einer WZ- Maschine,	



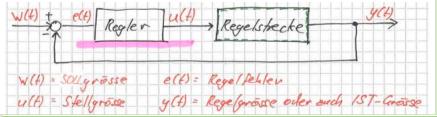


Ermitteln der DGL eines Gesamt-Systems

Detailierter Aufbau:



Vereinfachter Aufbau:



Vorgehen Gesamt DGL

- (1) Gleichung der Strecke ermitteln
 - $\dot{y}(t) = u(t) \rightarrow Polstellen herausfinden$ Beispiel:
- (2) Regler auswählen

Beispiel: P Regler

- (3) Gleichung des Reglers
 - P Regler: $x_a(t) = K_{PR} \cdot e(t)$
- (4) Vergleichspunkte:
 - e(t) = w(t) y(t)
- (5) Vergleichspunkt in Regler einsetzen:
 - $u(t) = K_{PR} \cdot (w(t) y(t))$
- (6) Vergleichspunkte und Regler in Strecke einsetzen:
 - $\dot{y}(t) = K_{PR} \cdot (w(t) y(t))$ $= G_w$
- (7) Sortieren nach Eingang/Ausgang und höchste Ableitung normieren:
 - $\dot{y}(t) + K_{PR} \cdot y(t) = K_{PR} \cdot w(t)$

$DGL \leftrightarrow \ddot{U}bertragungsfunktion$

$$DGL = \dot{y}(t) + K_{PR} \cdot y(t) = K_{PR} \cdot w(t)$$

DGL Laplacetranformieren

$$DGL \circ \bullet = s \cdot Y(s) + K_{PR} \cdot Y(s) = K_{PR} \cdot W(s)$$

$$Y(s) \cdot (s + K_{PR}) = K_{PR} \cdot W(s)$$

Linke Seite nach unten | Rechte Seite nach oben

$$G(s) = \frac{Y(s)}{W(s)} = \frac{K_{PR}}{(s + K_{PR})}$$

Geschlossener Regelkreis

Funktion enthält nur w & y

$$\ddot{y}(t) + 4 \cdot \dot{y}(t) + 0.5 \cdot y(t) = u$$
$$u = Regler \cdot e$$

u ersetzen

$$e = (w - y)$$

 $\ddot{y}(t) + 4 \cdot \dot{y}(t) + 0.5y(t) = \text{Regler} \cdot (w - y)$

 $\ddot{y}(t) + 4 \cdot \dot{y}(t) + 0.5y(t) = \mathbf{u}$

Nach w Auflösen

 $\ddot{y}(t) + 4 \cdot \dot{y}(t) + (0.5 + \text{Regler})y(t) = w$

Beharrungswert $x(\infty)$

Mit Übertragungsfunktion

$$G_w(s=0)\cdot w(\infty)=x(\infty)$$

Logische Überlegung, wenn Regler bekannt

Beispiel: P Regler bei $x(\infty) = K_P \cdot w(\infty)$

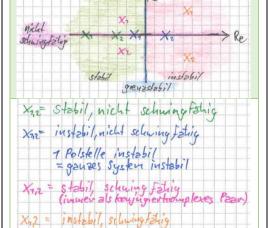
Beispiel: $\{K_P = 2\}, \{w(t) = u(t-1)\} \rightarrow 2$

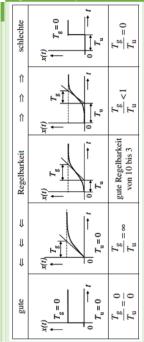
Alle Integratoren = 0 & Eingangssignal einsetzen

$$\ddot{\underline{w}}(t) + 4 \cdot \dot{\underline{w}}(t) + 0.5 \cdot w(t) = x \quad \text{mit} \quad \{w(\infty) = 3\}$$

 $0.5 \cdot 3 = x(\infty)$ $0.5 \cdot w(\infty) = x(\infty)$

Systeme Charakterisieren: Stabilitäten von Gesamtsystemen (Nur Polstellen)





Bleibende Regelabweichung $e(\infty)$

Mit Übertragungsfunktion

$$e(\infty) = \frac{1}{G_w(s=0)} \cdot w(\infty) \cdot (-z)$$

Wenn $x(\infty)$ schon bekannt

$$e(\infty) = w_0 - x(\infty)$$

DGL

Bleibende Regelabweichung $\rightarrow e(t \rightarrow \infty) \neq 0$

 $\ddot{y}(t) + 4 \cdot \dot{y}(t) + 0.5 \cdot y(t) = u$ Sollwertsprung 0 auf 7 $P Regler \mid w_0 = 7$ Alle Integratoren = 0 $\underbrace{\ddot{y}}_{=0}(t) + 4 \cdot \underbrace{\dot{y}}_{=0}(t) + 0.5 \cdot \underbrace{\dot{y}}_{\neq 0}(t) = u \qquad y = (w - e)$

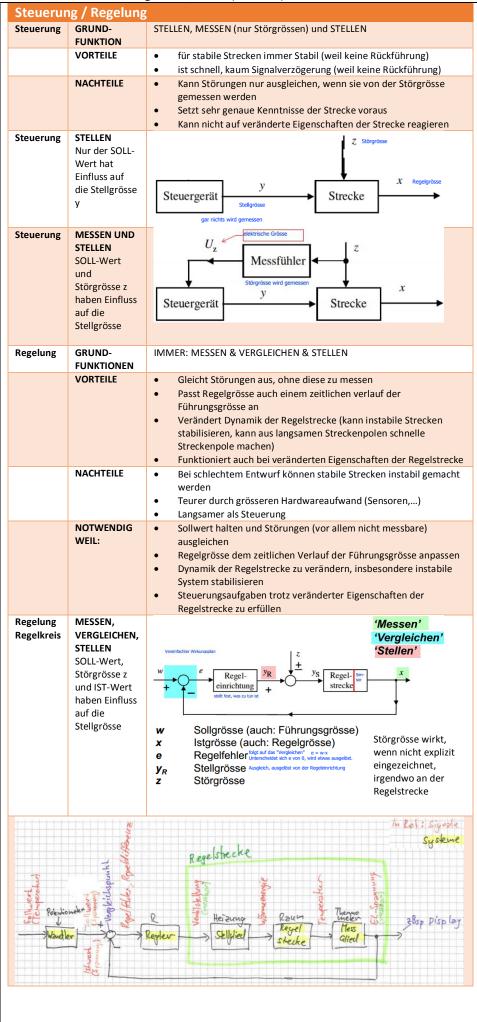
$$Solve(0.5 \cdot (w - e) = Kp \cdot e , e)$$

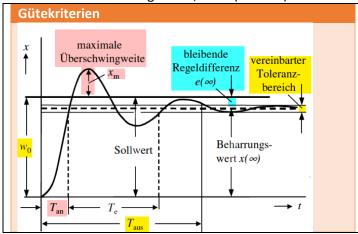
$$e(\infty) = \frac{1}{2 \cdot Kp + 1} \cdot w \quad \underset{w \text{ einsetzen}}{\longrightarrow} \quad e(\infty) = \frac{1}{2 \cdot Kp + 1} \cdot 7$$

 $e(\infty)$ Wird nie 0 $\frac{1}{2 \cdot Kp + 1} = 0$ Wird kleiner wenn Kp Gross

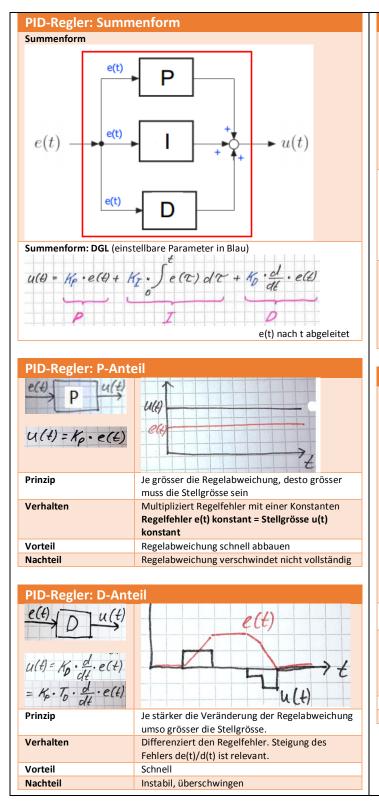
Wird Statische Störung unterdrückt?

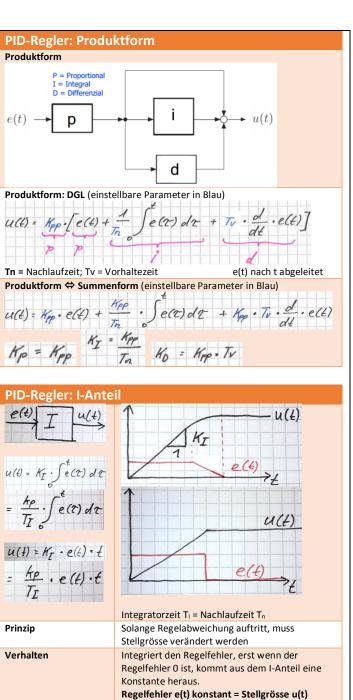
 $G_z(s=0) \neq 0$ Wird nicht unterdrückt





	00.000 00.000
Gütek	kriterien
Ausgan	g y(t) wird von der Kurve dargestellt.
x (∞)	Beharrungswert = Wert des Ausgangs nach langer Zeit = stationärer Ausgang
e (∞)	Bleibende Regelabweichung bzw. bleibende Regeldifferenz
	= Differenz aus stationärem Eingang w_0 und stationärem Ausgang $x(\infty)$
\mathbf{W}_0	Sprunghöhe der Führungsgrösse = SOLL-Wert
T _{an}	Anregelzeit = Zeit bis Ausgangsgrösse y(t) das erste mal über das Toleranzband fährt. Kürzer Tan = grösseres Überschwingen Xm
Te	Periodendauer einer Schwingung
T _{aus}	Ausschwingzeit = Zeit nach der das Ausgangssignal y(t) im Toleranzband bleibt





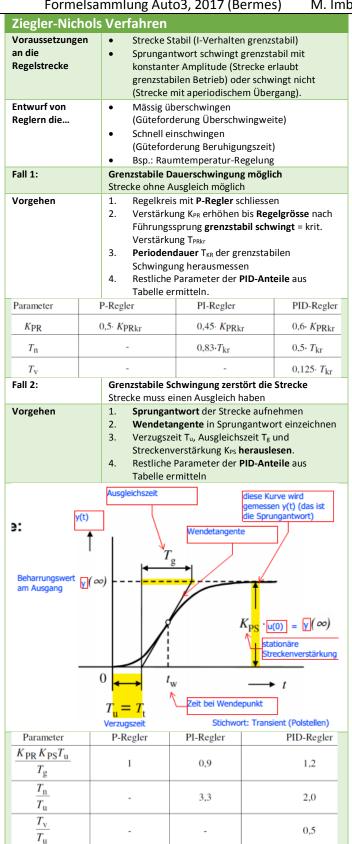
ändert sich

Langsam

Keine bleibende Regelabweichung

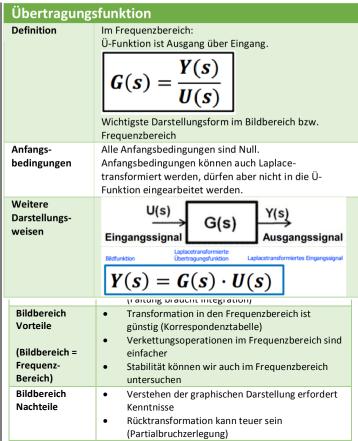
Vorteil

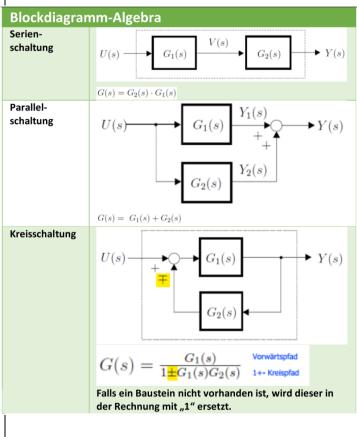
Nachteil



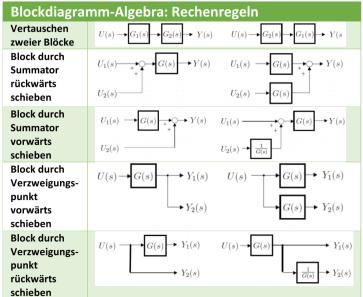
Jen		Seite 12 voii 25					
Chien-	Hrones	-Res	swick (C	CHR) Verfa	hren		
Vorausso an der Regelstr	etzungen ecke	•	Strecke stabil (I-Verhalten grenzstabil) Sprungantwort schwingt nicht (Strecke mit aperiodischem Übergangsverhalten) Keine stabile Dauerschwingung!				
Entwurf Reglern		• OD •	Nicht überschwingen (Güteforderung Überschwingweite) Langsam anregeln (Güteforderung Anregelzeit)				
	(Güteforderung Anregelzeit)						
vorgene	Vorgehen Gleich wie bei Ziegler-Nichols Fall 2 nicht überschwingen 20% überschwingen						
Reglereinstellung nach Chien, Hrones, Reswick				her Regelverlauf	Regelve	erlauf mit schwingung	
Regler	Paramet	er	Führung	Störung	Führung	Störung	•
	v v	$T_{\mathbf{u}}$					

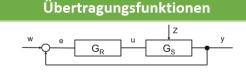
		nicht übersch	nwingen	20% überschwi	ingen
Reglereinstellung nach Chien, Hrones , Reswick		Aperiodischer Regelverlauf		Regelverlauf mit 20% Überschwingung	
Regler	Parameter	Führung	Störung	Führung	Störung
P	$K_{PR}K_{PS}\frac{T_{u}}{T_{g}}$	0,3	0,3	0,7	0,7
PI	$K_{\rm PR}K_{\rm PS}\frac{T_{\rm u}}{T_{\rm g}}$	Folgereg. 0,35	0,6	0,6	0,7
	T _n	1,2· <i>T</i> g	4-Tu	1,0-T _g	2,3·Tu
PID	$K_{\rm PR} K_{\rm PS} \frac{T_{\rm u}}{T_{\rm g}}$	0,6	0,95	0,95	1,2
	$T_{\rm n}$	1,0-T _g	2,4·Tu	1,35·Tg	2,0·Tu
	$\frac{T_{\rm v}}{T_{\rm u}}$	0,5	0,42	0,47	0,42





Übertragungsfunktion: Darstellungsformen				
Darstellungs- form	Notation im Frequenzbereich			
Polynom (System- Ordnung)	$G(s) = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$			
	Übertragungsfunktion: $G(s) = \frac{Y(s)}{U(s)} = \frac{b_m * s^m + \cdots}{a_n * s^n + \cdots}$ LAPLACE-Transformierte (Bildgleichung): $Y(s) * [a_n * s^n + \cdots] = U(s) * [b_m * s^m + \cdots]$ DGL: (Zeit) $a_n * y^{(n)}(t) + \cdots = b_m * u^{(m)}(t) + \cdots$			
Pol- Nullstellen	(Direkt ablesbar: unten Pole, oben Nullstellen) (Stabilität direkt ablesbar) $G(s) = k \cdot \frac{(s-s_{0,1})(s-s_{0,2})\cdots(s-s_{0,m})}{(s-s_{\infty,1})(s-s_{\infty,2})\cdots(s-s_{\infty,n})}$			
Partialbruch	(für inverse Laplace-Trafo) $G(s) = \frac{A_1}{s - s_{\infty,1}} + \frac{A_2}{s - s_{\infty,2}} + \dots + \frac{A_n}{s - s_{\infty,n}}$ Jeder Summenteil bzw. jeder Partialbruch kann alleine durch die Korrespondenztabelle gejagt und in den Zeitbereich zurücktransformiert werden.			

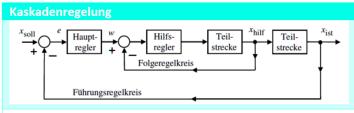




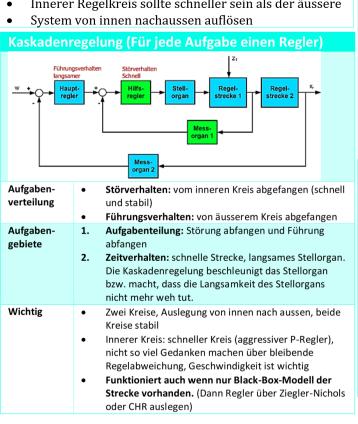
$G_w = F$ ü $hrungs -$ ü $bertragungsfunktion$	$G_z = St\"{o}rungs - \ \ddot{u}bertragungsfunktion$
$G_w = G_{w \to y} = \frac{G_S \cdot G_R}{1 + G_S \cdot G_R}$	$G_Z = G_{Z \to Y} = \frac{G_S}{1 + G_S \cdot G_R}$
$G_{w \to e} = \frac{1}{1 + G_S \cdot G_R}$	
$G_{w \to u} = \frac{G_R}{1 + G_S \cdot G_R}$	$G_{z \to u} = \frac{1}{1 + G_S \cdot G_R}$
7 0 1	0 0

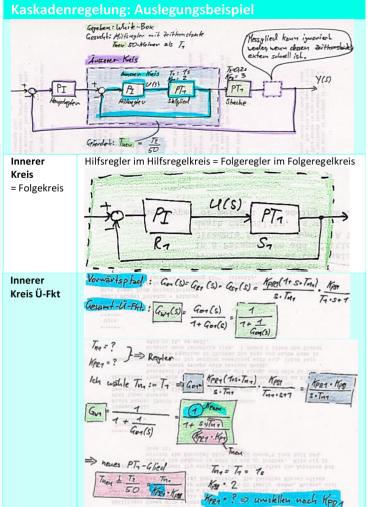
Loop Gain = $G_S \cdot G_R$

Kaskadenregelung



Innerer Regelkreis sollte schneller sein als der äussere





Vorsteuerung / Kompensationsregler

Kompens	ationsregler: geeignete Strecken			
Geeignete Strecken	Für eine Kompensationsregelung sind Strecken mit folgenden Eigenschaften geeignet: Kausal Stabil Keine Totzeit (keine Verzögerung) Mit Ausgleich (Sprungantwort strebt einem Beharrungswert zu)			
Beispiel einer geeigneten Strecke	$G(s) = \frac{1}{(s+1)^2} \qquad s = \sigma + j\omega$ $\omega = 0, \qquad \sigma < 0$ • Stabil, nicht schwingfähig			
Beispiele un- geeigneter Strecken	Für folgende Strecken ist Kompensation nicht möglich: $G(s) = \frac{(s+1)^3}{(s+1)^2} \text{Akausal}$ $G(s) = \frac{1}{s-1} \text{Instabil}$ $G(s) = \frac{1}{s^2} \text{Ohne Ausgleich}$			
Buch- definition	Der Kompensationsregler nach (12.2) ist nur für Führungsverhalten und nur für stabile Strecken mit Ausgleich und ohne Totzeit anwendbar. Bei der Wahl der gewünschten Übertragungsfunktion $G_{\rm M}(s)$ soll berücksichtigt werden, dass das Nennerpolynom der Gl. (12.3) keine Polstellen in der rechten s -Halbebene besitzen darf. Das Kompensationsprinzip hat folgender Nachteil: die Zeitkontanten der industriellen Regelstrecken führen bei der reziproken Übertragungsfunktion der Strecke zu mehreren differenzierenden Anteilen des Reglers. Die D-Anteile erschweren die Realisierung des modellbasierten Reglers und verschlechtern die Regelung.			

Kompensationsregelung / Vorsteuerung

Vorsteuerung Macht

- Wirkt auf die Strecke wie eine 'normale' Steuerung
- Der Regler hat weniger zu tun (Regler machts)
- Der Regler ist für die Störunterdrückung, die Vorsteuerung für die Führung
- Beeinflusst das Führungsverhalten

Nachteile

- Nicht immer möglich
 - Z.B, wenn Strecke mehr Pole als Nullstellen → (nicht möglich)
 - Z.B, wenn die Strecke Nullstellen in der linken Halbebene hat → (Instabil)

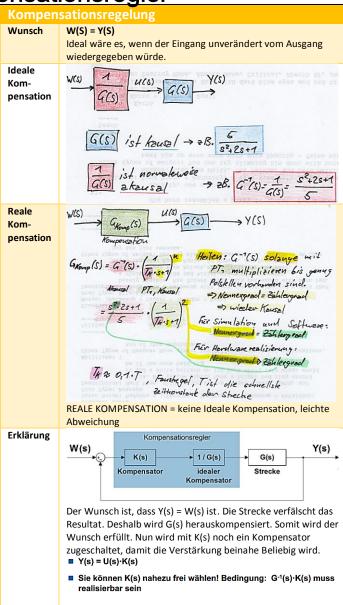
Auslegung

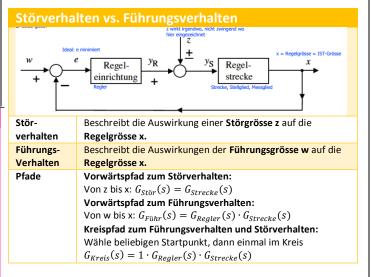
Vorsteuerung =
$$\frac{1}{G_w} \underset{Folge}{\overset{\smile}{\longrightarrow}} G_w = 1$$

Wird gebraucht bei

- Klimaanlage Auto
- Positionssteuerungen

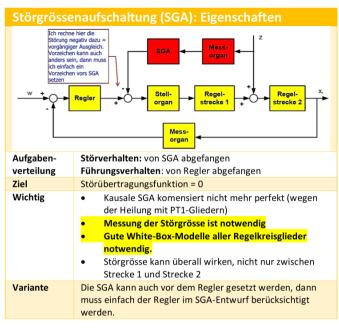
Grundsätzliche Anforderungen an einen Regler			
Gutes Führungs- verhalten	Sollwerte der RegelgrösseFührungsübertragungsfunktion		
Gutes Stör- verhalten	 Robustheit der Regelgrösse bei unerwünschten Eingängen (z) Störübertragungsfunktion 		
Widerspruch	 Beide Anforderungen widersprechen sich beim Entwurf eines Reglers für die Strecke 		
Abhilfe	 Spezialisierung: Für jede Aufgabe einen einzelnen Regler. Ein Regler für das Führungsverhalten Ein Regler für das Störverhalten 		





Störgrössenaufschaltung & Vorfilter & 2 Punkt Regler

Störgrössenaufschaltung Wird gebraucht bei Aufbau Hauptstörgrösse genau lokalisierbar und messbar, $G_{Rz}(s)$ aber nicht beeinflussbar (Außentemperatur, bei Gebäudeheizungen) Bei grossen Totzeiten vom Regler $G_{\mathbb{R}}(s)$ $G_{S}(s)$ Störungen im vorderen Teil der Strecke Nachteil Ziel Die Störung muss gemessen werden Versucht Störung direkt zu Kompesieren Die Störung muss messbar sein Vorteil zu Kaskadenregelung Sonstiges Die Stabilität des Regelkreises wird nicht Eine Statisch wirkende Störgrössen am Eingang der beeinflusst Regelstrecke wird unmittelbar korrigiert Führungsverhalten unverändert Eine Statisch Wirkende Störgrösse am Ausgang der Regelstrecke wird Zeitverzögert korrigiert



Vorfilter F

Macht

- Das Referenz w(t) soll nur so schnell ändern, dass der geschlossene Kreis folgen kann
- F bietet Angepasstes
 Führungsverhalten
- F verändert die Stabilität nicht

Mathematische Formel

$$G_f = F \cdot G_w$$

Wird gebraucht bei

 Rauschen (Tiefpassfilter / Hochpassfilter)

2 Punkt Regler			
Allgemeines	Nachteile		
 Nichtlinearen Regler Es gibt keine Übertragungsfunktion 	 Schaltet dieser sehr häufig Wegen: Messrauschen Fehler e(t) schwankt um 0 Bei Häufige Schaltung entstehen Schnelle Alterung, Erhitzung, Lärm 		
Vorteile	Lösung der Nachteile		
 Der Fehler bleibt sehr klein Schnellster Regler Einfache Umsetzung (in Hard- / Software) 	 Hysterese: Toleranzfenster z.B. 80 ± 1 Verzögerung des Schaltens z.B. nur alle 2 Sekunden schalten 		

Elektroplan

Für alle Elektroschemas

Widerstand	$U_R(t) = R \cdot I_R(t)$	
Kondensator	$U_C(t) = \frac{1}{C} \int I_C(t) dt$	$I_C(t) = C \cdot \frac{U_C(t)}{dt}$
Spule	$U_L(t) = L \cdot \frac{I_L(t)}{dt}$	$I_L(t) = \frac{1}{L} \cdot \int U_L(t) \ dt$

+ Statt integrieren Rest ableiten $U_C(t) \& I_C(t)$ abhänig von t

$$U_C(t) = \frac{1}{C} \int I_C(t) dt \rightarrow \dot{U}_C(t) = \frac{1}{C} \cdot I_C(t)$$

V oder A Gleichung aufstellen Was mehr vorhanden

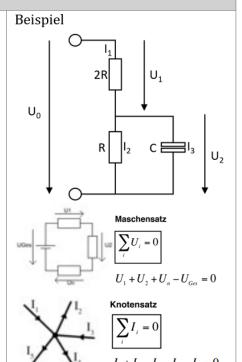
$$y(t) = x(t)$$

Beispiel Rechnung

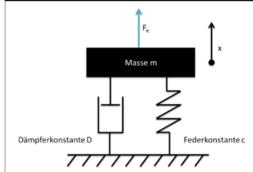
$$x(t) = U_0(t)$$
 & $y(t) = U_2(t)$

$$\frac{I_1(t) = I_2(t) + I_3(t)}{\frac{U_2(t)}{R} + C \cdot \frac{U_2(t)}{dt} = \frac{U_0(t) - U_2(t)}{2R}$$

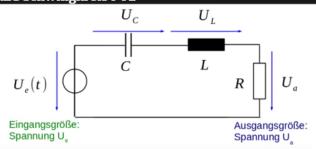
$$\frac{2}{3R} \cdot y + \frac{C}{2R} \cdot \dot{y} = x$$



Regler Masse Dämpfer System Beispiel PT2



RLC Schwingkreis PT2



DGL Austellen

DGE Hu	Stetteri			
I ist überall gleich	$U_a(t) = R \cdot I(t)$			
$U_L(t) = L \cdot \frac{dI(t)}{dt}$ $U_c(t) = \frac{1}{C} \int I(t) dt$				
$\dot{U}_e = L \cdot \ddot{I} + R \cdot \dot{I} + \frac{1}{C}I$				
$\frac{L}{R} \cdot \ddot{U}_a + \dot{U}_a + \frac{1}{R \cdot C} U_a = \dot{U}_e$				
Gleich Fortfahren wie vorher				

$$m = 1.5 \text{ kg}$$
 $d = 2 \text{ Ns /m}$ $c = 10 \text{ N/m}$ $Fe = 10 \text{ N}$

Kräftegleichgewicht aufstellen

DGL:
$$-m \cdot \ddot{x} - d \cdot \dot{x} - c \cdot x = \text{Fe}$$

$$m \cdot \ddot{x} + d \cdot \dot{x} + c \cdot x = Fe$$

$$\underbrace{1.5 \cdot \ddot{x} + 2 \cdot \dot{x} + 10 \cdot x}_{u(t)} = \underbrace{10}_{y(t)}$$

 $\underbrace{\frac{1.5 \cdot \ddot{x} + 2 \cdot \dot{x} + 10 \cdot x}{u(t)} = \underbrace{10}_{y(t)}}_{u(t)}$ Laplace transformation & $\frac{Y(s)}{U(s)} = G(s)$

$$\frac{10}{1.5 \cdot s^2 + 2 \cdot s + 10} \rightarrow \frac{1}{\frac{1}{3} \cdot s^2 + \frac{1}{5} \cdot s + 1}$$
$$\frac{1}{\frac{1}{3} \cdot s^2 + \frac{1}{5} \cdot s + 1} = \frac{K_P}{s^2 T_2^2 + s T_1 + 1}$$

$$K_{
m P} = 1$$
 $T_1 = rac{1}{5}$ $T_2 = \sqrt{rac{1}{3}}$

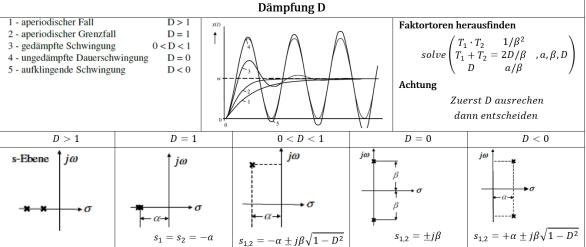
$$solve \begin{pmatrix} T_1 \cdot T_2 & 1/\beta^2 \\ T_1 + T_2 &= 2D/\beta &, a, \beta, D \\ D & a/\beta \end{pmatrix}$$

 $D \ge 1 \rightarrow aperiodsche Dämpfung$ $T_1 \& T_2$ einsetzen

Tabelle der wichtigsten Regelkreisglieder

Tube	ne dei wichtigsten ke	Beiliteisgheder	
Regel- kreis- glied	Differentialgleichung	Übertragungsfunktion $G(s) = \frac{x_a(s)}{x_e(s)}$	Sprungantwort
P	Frequenzgang $G(j\omega) = K_P$ $x_{\rm a}(t) = K_{\rm P} \; x_{\rm e}(t)$ Gedächnis Länge 0	$G_{\mathcal{S}}(s) = K_{\mathcal{P}}$	X_a $K_{P_i} X_{e0}$ t
P-T ₁	Frequenzgang $G(j\omega)=\frac{K_P}{j\omega T_1+1}$ $T_1\dot{x}_a\left(t\right)+x_a\left(t\right)=K_P\ x_c\left(t\right)$ Gedächnis Länge 1	$\frac{K_{\rm P}}{1+sT_1}$	$X_{\mathbf{a}} \downarrow T_{1} \downarrow \qquad \qquad K_{\mathbf{P}} X_{\mathbf{e}0} \downarrow 0,63 X_{\mathbf{a}}(\infty) \downarrow t$
Gedächnis Länge 2	$T_1T_2\ddot{x}_a(t) + (T_1 + T_2)\dot{x}_a(t)$ $+ x_a(t) = K_P x_e(t)$ aperiodischer Verlauf bei $D \ge 1$ $\text{mit } D = \frac{\alpha}{\beta}$	$\frac{K_{P}}{(1+sT_{1})(1+sT_{2})}$ $\approx \frac{K_{P}}{1+sT_{g}}e^{-sT_{u}}$	X_a $T_{\mathbf{q}}$ $X_{\mathbf{p}}$ $X_{\mathbf{p}}$ $X_{\mathbf{p}}$
P-T ₂	$\frac{1}{\beta^2} \ddot{x}_{a}(t) + \frac{2D}{\beta} \dot{x}_{a}(t) + x_{a}(t)$ $= K_P x_e(t)$ gedämpft schwingend bei $0 < D < 1$	$\frac{K_{\rm P}}{s^2 T_2^2 + s T_1 + 1}$ $= \frac{K_{\rm P} \beta^2}{s^2 + s \cdot 2\alpha + \beta^2}$	X_{a} $K_{P}X_{c0}$ t

Ortskurve	Bode-Diagramm	Pol-Null- Stellen- Verteilung	Beispiel
$\begin{array}{c c} Im & \\ \longleftarrow K_{\mathbf{P}} \longrightarrow \downarrow \\ \hline & Re \end{array}$	$ \begin{array}{c c} G _{dB} & & & \\ \hline 20 \log K_{p_{+}}^{\dagger} & & & \\ \varphi(\omega) & & & & \\ \hline 0^{\circ} & & & & \\ \end{array} $	$ \begin{array}{c} j\omega \\ \uparrow \\ s - \text{Ebene} \\ \hline \qquad \qquad$	R ₁ Getriebe
$\omega = \omega \qquad \qquad \omega = 0$ $\omega_{\rm E} = 1/T_1$	G _{dB}	$j\omega$ s_1 σ T_1	Heizkessel x_e C x_a x_a
$\lim_{\substack{\infty \\ \longleftarrow K_{P} \longrightarrow \omega = 0 \\ f}} \int_{I} \operatorname{Re}$	$ G _{dB}$ $\downarrow D = 0$ $0 < D < 1$ $D > 1$	$ \begin{array}{c} j\omega \\ \xrightarrow{\star} s_2 s_1 \end{array} $	$\begin{array}{c} R_1 \\ R_2 \\ \end{array}$
W/T ₂	$0 = 0 \omega$ $0 < D < 1$ -180° $D = 0 \omega$ $0 < D < 1$ $D > 1$	$j\omega$ s_1 s_2	RLC Kreis R L x _e C x _a



Frequenzgang $G(j\omega)$

 $\frac{K_P}{T_1T_2(j\omega)^2 + (T_1 + T_2)j\omega + 1}$

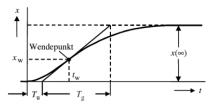


Bild 3.10

Sprungantwort und Kenngrößen:

 $T_{
m u}$ Verzugszeit $T_{
m g}$ Ausgleichszeit

$T_{\rm u}$	$T_{\rm b}$	$\frac{T_{\rm g}}{T_{\rm a}}$	t_{W}	X _w
$T_{ m g}$	$T_{\rm a}$	$\overline{T_{\mathrm{a}}}$	$T_{\rm a}$	<i>x</i> (∞)
0,000	0,00	1,000	0,000	0,000
0,016	0,02	1,083	0,080	0,058
0,032	0,05	1,171	0,158	0,103
0,050	0,10	1,292	0,256	0,148
0,063	0,15	1,399	0,335	0,177
0,072	0,20	1,495	0,402	0,197
0,084	0,30	1,675	0,516	0,224
0,092	0,40	1,842	0,611	0,240
0,097	0,50	2,000	0,693	0,250
0,100	0,60	2,151	0,766	0,256
0,102	0,70	2,299	0,832	0,260
0,103	0,80	2,439	0,893	0,263
0,103	0,90	2,548	0,948	0,264
0,104	1,00	2,718	1,000	0,264

Aperiodischer Grenzfall

• $T_1 = T_2$

DGI

 $T_1^2 \ddot{x}_a(t) + 2T_1 \dot{x}_a(t) + x_a(t) = K_P x_e(t)$

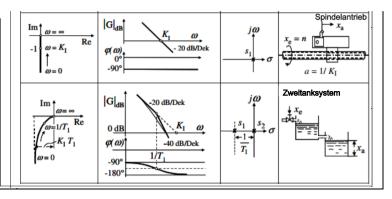
Sprungantwort

$$x_a(t) = K_P x_{e0} \left(1 - e^{-\frac{t}{T_1}} - \frac{t}{T_1} e^{-\frac{t}{T_1}} \right)$$

Impulsantwort

$$\dot{x}_a(t) = \frac{K_P x_{e0}}{T_1^2} t e^{-\frac{t}{T_1}}$$

I	Frequenzgang $G(j\omega)=\frac{K_I}{j\omega}$ $x_{\rm a}(t)=K_{\rm I}\int x_{\rm e}(t)dt$ Gedächnis Länge ∞	$\frac{K_{\rm I}}{s} = \frac{K_{i}}{T_{i} * s}$	$\begin{array}{c c} x_{\mathbf{a}} & \uparrow \\ \hline & K_{1} x_{\mathbf{e}0} \\ \hline & 1/K_{1} & 1 & t \end{array}$
I-T ₁	$T_1\dot{x}_a\left(t ight)+x_a\left(t ight)=K_1\int x_e\left(t ight)dt$ Gedächnis Länge ∞	$\frac{K_1}{s(1+sT_1)}$	X_{a} $K_{1}X_{e0}$ T_{1} t



Regel- kreis- glied	Differentialgleichung	Übertragungsfunktion	Sprungantwort
D	$x_{\mathbf{a}}(t) = K_{\mathbf{D}} \dot{x}_{\mathbf{e}}(t)$	$s \cdot K_{\mathbf{D}}$	$\begin{array}{c} x_a \\ \downarrow \\ \hline \downarrow \\ \hline \varepsilon \\ \rightarrow 0 \end{array}$
	Gedächnis Länge 0		£ 70 .
D-T ₁	$T_1 \dot{x}_a(t) + x_a(t) = K_D \dot{x}_e(t)$	$\frac{s \cdot K_{\rm D}}{1 + sT_1}$	X_{a} T_{1} T_{1} T_{1}
	Gedächnis Länge 1	()	
PI	$\begin{aligned} x_{\mathrm{a}}\left(t\right) &= \\ &= K_{\mathrm{P}}\left[x_{\mathrm{e}}\left(t\right) + \frac{1}{T_{\mathrm{n}}}\int x_{\mathrm{e}}\left(t\right)dt\right] \end{aligned}$ Gedächnis Länge ∞	$K_{P}\left(1 + \frac{1}{sT_{n}}\right)$ bzw. $K_{P}\frac{1 + sT_{n}}{sT_{n}}$	$K_{p}X_{e0}$ $K_{p}X_{e0}$ t
PI-T ₁	$T_{1}\dot{x}_{\mathrm{a}}\left(t\right)+x_{\mathrm{a}}\left(t\right)=$ $=K_{\mathrm{P}}\left[x_{\mathrm{e}}\left(t\right)+\frac{1}{T_{\mathrm{n}}}\int x_{\mathrm{e}}\left(t\right)dt\right]$ Gedächnis Länge ∞	$\frac{K_{\mathbf{P}}(1+sT_{\mathbf{n}})}{sT_{\mathbf{n}}(1+sT_{\mathbf{l}})}$	$\begin{array}{c c} X_n & & & f_{K_p X_c} \\ \hline T_1 & & f_{K_p X_c} \\ \hline & & & K_p X_{c} \\ \hline & & & f \end{array}$
PD	$x_{\mathrm{a}}\left(t\right)=K_{\mathrm{P}}\left[x_{\mathrm{e}}\left(t\right)+T_{\mathrm{v}}\dot{x}_{\mathrm{e}}\left(t\right)\right]$ Gedächnis Länge 0	$K_{\rm P}(1+sT_{\rm v})$	X _a ↑ K _p X _{e0} t
$PD-T_1$ mit $T_v > T_1$	$T_{1}\dot{x}_{a}\left(t\right)+x_{a}\left(t\right)=$ $=K_{P}\left[x_{e}\left(t\right)+T_{V}\dot{x}_{e}\left(t\right)\right]$ Gedächnis Länge 1	$K_{\mathbf{P}} \frac{1 + sT_{\mathbf{v}}}{1 + sT_{\mathbf{l}}}$	$X_{a} \downarrow K_{p} \frac{T_{v}}{T_{1}} X_{e0}$ $\uparrow K_{p} X_{e0}$ $\downarrow K_{p} X_{e0}$

Ortskurve	Bode-Diagramm	Pol-Null- Stellen- Verteilung	Beispiel
$ \begin{array}{c c} \operatorname{Im} & \omega \to \infty \\ \uparrow & & \operatorname{Re} \\ \omega = 0 & & \\ \end{array} $	G _{dB}	$ \begin{array}{c} j\omega \\ \uparrow \\ s_{\text{N1}} \end{array} $	Kondensator $x_e C \xrightarrow{i} i = x_a$
$\frac{\operatorname{Im} _{0}^{\bullet} \operatorname{1/T_{1}} \omega _{\infty}}{\operatorname{K}_{D}/T_{1}} \operatorname{Re}$	$ G _{dB} = \frac{1}{K_D} 1/T_1 \omega$ $\varphi(\omega) + 20 \text{ dB/Dek}$ $90^{\circ} \qquad \omega$	$ \begin{array}{c} j\omega \\ \downarrow s_1 \\ \downarrow s_{N1} \\ \uparrow I/T_1 \end{array} $	x_{e} R x_{a} x_{a}
$ \begin{array}{c c} Im & \omega = \infty \\ \hline K_{P} & \omega & Re \\ \downarrow & \omega = 0 \end{array} $	$ G _{dB}$ $= 20 \frac{dB}{Dck}$ $= 20 \log K_{\rm p}$ $= 0^{\circ}$ $= 1/T_{\rm n}$ $= 0^{\circ}$ $= 90^{\circ}$	$ \begin{array}{c c} j\omega \\ s_{\text{N1}} \\ s_{1} \\ \hline J/T_{\text{n}} \end{array} $	$x_{c}=F$
$\frac{\operatorname{Im}}{\infty} \xrightarrow{\operatorname{Re}} \frac{\operatorname{Re}}{W_{\operatorname{P}}(1 - \frac{T_1}{T_n})}$	$ G _{dB}$ $-20dB/Dek$ $20 \lg K_P$ $-20dB/Dek$ $\varphi(\omega)$ $1/T_n$ $1/T_1$ ω -90°	$ \begin{array}{c} j\omega \\ +1/T_1 + \\ s_{N1} \\ s_2 \\ 1/T_n \end{array} $	$\begin{bmatrix} x_c & M & C \\ \hline & C & X_a \end{bmatrix}$
$ \begin{array}{c c} Im & & & & & \\ K_p & & & & \\ \downarrow & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	G _{dB} +20 dB/Dek	$ \begin{array}{c} j\omega \\ \downarrow \\ \downarrow \\ 1/T_{v} \end{array} $	$x_e = \alpha$
$\frac{\operatorname{Im} \bigcup_{0}^{\infty} \widehat{1/T_{1}}_{\infty}}{K_{p}}$	G _{dB}	$ \begin{array}{c} j\omega \\ +1/T_1 \rightarrow \\ s_{N1} \rightarrow \\ s_1 \rightarrow \\ 1/T_v \end{array} $	C $x_{e} R_{1} R_{2} x_{a}$ $T_{1} = (R_{1} \mid R_{2}) \cdot C$

Glie	ed	Differentialgleichung	Übertragungsfunktion	Sprungantwort
PP- mit $T_{\rm v} <$	t	$T_{\mathrm{I}}\dot{x}_{\mathrm{a}}\left(t\right)+x_{\mathrm{a}}\left(t\right)=$ $=K_{\mathrm{P}}\left[x_{\mathrm{e}}\left(t\right)+T_{\mathrm{V}}\dot{x}_{\mathrm{e}}\left(t\right)\right]$ Gedächnis Länge 1	$K_{\rm P} \frac{1 + sT_{\rm v}}{1 + sT_1}$	$X_{a} \downarrow T_{1} \downarrow K_{p} X_{e0} \downarrow T_{1} \downarrow K_{p} X_{p} X_{e0} \downarrow T_{1} \downarrow K_{p} X_{p} X_{e0} \downarrow T_{1} \downarrow K_{p} X_{e0} \downarrow $
PII	D	$\begin{aligned} x_{\mathrm{a}}(t) &= K_{\mathrm{P}} \; x_{\mathrm{e}}(t) + \\ &+ K_{\mathrm{P}} \frac{1}{T_{\mathrm{n}}} \int x_{\mathrm{e}}(t) dt \\ &+ K_{\mathrm{P}} T_{\mathrm{v}} \dot{x}_{\mathrm{e}}(t) \end{aligned}$ Gedächnis Länge ∞	Additive Form: $K_{\rm P} \bigg(1 + \frac{1}{sT_{\rm n}} + sT_{\rm v} \bigg)$ Multiplikative Form: $K_{\rm P}' \frac{(1 + sT_{\rm n}')(1 + sT_{\rm v}')}{sT_{\rm n}'}$	X_{a} $K_{p}X_{e0}$ $K_{p}X_{e0}$
PID-	Gedächnis Länge ∞	$T_{1}\dot{x}_{a}(t) + x_{a}(t) = \\ = K_{P} x_{e}(t) \\ + K_{P} \frac{1}{T_{n}} \int x_{e}(t) dt \\ + K_{P} T_{v}\dot{x}_{e}(t)$ mit $K_{P} = K'_{P} \left(1 + \frac{T'_{v}}{T'_{n}} \right) \\ T_{n} = T'_{n} + T'_{v} \\ T_{v} = \frac{T'_{n}T'_{v}}{T'_{n} + T'_{v}}$	Additive Form: $K_{\rm P} \frac{s^2 T_{\rm n} T_{\rm v} + s T_{\rm n} + 1}{s T_{\rm n} \left(1 + s T_{\rm 1}\right)}$ Multiplikative Form: $K_{\rm P}' \frac{(1 + s T_{\rm n}')(1 + s T_{\rm v}')}{s T_{\rm n}' \left(1 + s T_{\rm 1}\right)}$	$\begin{array}{c c} X_{\mathbf{a}} & K_{\mathbf{p}} \frac{T_{\mathbf{v}}}{T_{1}} x_{\mathbf{e}0} \\ \hline \uparrow T_{1} & \downarrow K_{\mathbf{p}} x_{\mathbf{e}0} \\ \hline \downarrow T_{\mathbf{n}} & \downarrow K_{\mathbf{p}} x_{\mathbf{e}0} \\ \hline \downarrow T_{\mathbf{n}} & \downarrow K_{\mathbf{p}} x_{\mathbf{e}0} \\ \hline \end{array}$
Tt		Totzeit Glied $x_{a}(t) = x_{e}(t - T_{t})$ Gedächniss Länge T_{t}	$G(s) = e^{-sT_{\rm t}}$	X_a X_{c0} X_{c0} X_{c0}

